Cargando…
An Optimized Hybrid Deep Learning Model to Detect COVID-19 Misleading Information
Fake news is challenging to detect due to mixing accurate and inaccurate information from reliable and unreliable sources. Social media is a data source that is not trustworthy all the time, especially in the COVID-19 outbreak. During the COVID-19 epidemic, fake news is widely spread. The best way t...
Autores principales: | Alouffi, Bader, Alharbi, Abdullah, Sahal, Radhya, Saleh, Hager |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8592767/ https://www.ncbi.nlm.nih.gov/pubmed/34790233 http://dx.doi.org/10.1155/2021/9615034 |
Ejemplares similares
-
The Role of Medication Data to Enhance the Prediction of Alzheimer's Progression Using Machine Learning
por: El-Sappagh, Shaker, et al.
Publicado: (2021) -
Blockchain-Based Digital Twins Collaboration for Smart Pandemic Alerting: Decentralized COVID-19 Pandemic Alerting Use Case
por: Sahal, Radhya, et al.
Publicado: (2022) -
Hybrid Deep Learning Model for Endoscopic Lesion Detection and Classification Using Endoscopy Videos
por: Ayyaz, M Shahbaz, et al.
Publicado: (2021) -
Ensemble Learning-Based Hybrid Segmentation of Mammographic Images for Breast Cancer Risk Prediction Using Fuzzy C-Means and CNN Model
por: Jha, Sudan, et al.
Publicado: (2023) -
CoAID-DEEP: An Optimized Intelligent Framework for Automated Detecting COVID-19 Misleading Information on Twitter
Publicado: (2021)