Cargando…
Computed Tomography Image Features under Convolutional Neural Network Algorithm in Analysis of Inflammatory Factor Level and Prognosis of Patients with Hepatitis B Virus-Associated Acute-on-Chronic Liver Failure
This study aimed to explore the application value of three-dimensional (3D) convolutional neural networks (3D-CNN)-based computed tomography (CT) image intelligent segmentation model in the identification of lesions of patients with hepatitis B virus-associated acute-on-chronic liver failure (HBV-AC...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8592768/ https://www.ncbi.nlm.nih.gov/pubmed/34790343 http://dx.doi.org/10.1155/2021/2110612 |
_version_ | 1784599543142154240 |
---|---|
author | Xie, Zhibing Ding, Li Li, Yongzhong |
author_facet | Xie, Zhibing Ding, Li Li, Yongzhong |
author_sort | Xie, Zhibing |
collection | PubMed |
description | This study aimed to explore the application value of three-dimensional (3D) convolutional neural networks (3D-CNN)-based computed tomography (CT) image intelligent segmentation model in the identification of lesions of patients with hepatitis B virus-associated acute-on-chronic liver failure (HBV-ACLF). A total of 30 patients with HBV-ACLF, 30 patients with chronic HBV hospitalized in hospital, and 30 healthy volunteers were selected as subjects. Liver function and serum inflammatory factors were measured in each group, and the 3D-CNN algorithm model was applied to CT imaging. The results showed that the levels of interleukin (IL)-6, IL-26, and IL-37 in the HBV-ACLF group were the highest, which were 128.43 ± 45.16 pg/mL, 1237.47 ± 536.22 pg/mL, and 50.83 ± 7.62 pg/mL, respectively. Total bilirubin (TBIL) (P=0.035) and IL-26 (P=0.013) were independent predictors that affected the prognosis of HBV-ACLF patients. The results of lesion segmentation showed that the Dice coefficient of 3D-CNN low-density focus and enhanced focus segmentation was the highest (0.821 ± 0.07 and 0.773 ± 0.071), and the marked area was close to the area manually drawn by the doctor. 3D CNN was superior to other algorithms in the number of nodular lesions detected (533), sensitivity (97.5%), and missed detection rate (0.52%) (P < 0.05). In short, IL-26 may become a useful biomarker in the treatment of HBV-ACLF. The 3D-CNN model improved the segmentation performance of lesions in CT images of HBV-ACLF patients, which provided a reference for the diagnosis and prognosis of HBV-ACLF. |
format | Online Article Text |
id | pubmed-8592768 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-85927682021-11-16 Computed Tomography Image Features under Convolutional Neural Network Algorithm in Analysis of Inflammatory Factor Level and Prognosis of Patients with Hepatitis B Virus-Associated Acute-on-Chronic Liver Failure Xie, Zhibing Ding, Li Li, Yongzhong J Healthc Eng Research Article This study aimed to explore the application value of three-dimensional (3D) convolutional neural networks (3D-CNN)-based computed tomography (CT) image intelligent segmentation model in the identification of lesions of patients with hepatitis B virus-associated acute-on-chronic liver failure (HBV-ACLF). A total of 30 patients with HBV-ACLF, 30 patients with chronic HBV hospitalized in hospital, and 30 healthy volunteers were selected as subjects. Liver function and serum inflammatory factors were measured in each group, and the 3D-CNN algorithm model was applied to CT imaging. The results showed that the levels of interleukin (IL)-6, IL-26, and IL-37 in the HBV-ACLF group were the highest, which were 128.43 ± 45.16 pg/mL, 1237.47 ± 536.22 pg/mL, and 50.83 ± 7.62 pg/mL, respectively. Total bilirubin (TBIL) (P=0.035) and IL-26 (P=0.013) were independent predictors that affected the prognosis of HBV-ACLF patients. The results of lesion segmentation showed that the Dice coefficient of 3D-CNN low-density focus and enhanced focus segmentation was the highest (0.821 ± 0.07 and 0.773 ± 0.071), and the marked area was close to the area manually drawn by the doctor. 3D CNN was superior to other algorithms in the number of nodular lesions detected (533), sensitivity (97.5%), and missed detection rate (0.52%) (P < 0.05). In short, IL-26 may become a useful biomarker in the treatment of HBV-ACLF. The 3D-CNN model improved the segmentation performance of lesions in CT images of HBV-ACLF patients, which provided a reference for the diagnosis and prognosis of HBV-ACLF. Hindawi 2021-11-08 /pmc/articles/PMC8592768/ /pubmed/34790343 http://dx.doi.org/10.1155/2021/2110612 Text en Copyright © 2021 Zhibing Xie et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Xie, Zhibing Ding, Li Li, Yongzhong Computed Tomography Image Features under Convolutional Neural Network Algorithm in Analysis of Inflammatory Factor Level and Prognosis of Patients with Hepatitis B Virus-Associated Acute-on-Chronic Liver Failure |
title | Computed Tomography Image Features under Convolutional Neural Network Algorithm in Analysis of Inflammatory Factor Level and Prognosis of Patients with Hepatitis B Virus-Associated Acute-on-Chronic Liver Failure |
title_full | Computed Tomography Image Features under Convolutional Neural Network Algorithm in Analysis of Inflammatory Factor Level and Prognosis of Patients with Hepatitis B Virus-Associated Acute-on-Chronic Liver Failure |
title_fullStr | Computed Tomography Image Features under Convolutional Neural Network Algorithm in Analysis of Inflammatory Factor Level and Prognosis of Patients with Hepatitis B Virus-Associated Acute-on-Chronic Liver Failure |
title_full_unstemmed | Computed Tomography Image Features under Convolutional Neural Network Algorithm in Analysis of Inflammatory Factor Level and Prognosis of Patients with Hepatitis B Virus-Associated Acute-on-Chronic Liver Failure |
title_short | Computed Tomography Image Features under Convolutional Neural Network Algorithm in Analysis of Inflammatory Factor Level and Prognosis of Patients with Hepatitis B Virus-Associated Acute-on-Chronic Liver Failure |
title_sort | computed tomography image features under convolutional neural network algorithm in analysis of inflammatory factor level and prognosis of patients with hepatitis b virus-associated acute-on-chronic liver failure |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8592768/ https://www.ncbi.nlm.nih.gov/pubmed/34790343 http://dx.doi.org/10.1155/2021/2110612 |
work_keys_str_mv | AT xiezhibing computedtomographyimagefeaturesunderconvolutionalneuralnetworkalgorithminanalysisofinflammatoryfactorlevelandprognosisofpatientswithhepatitisbvirusassociatedacuteonchronicliverfailure AT dingli computedtomographyimagefeaturesunderconvolutionalneuralnetworkalgorithminanalysisofinflammatoryfactorlevelandprognosisofpatientswithhepatitisbvirusassociatedacuteonchronicliverfailure AT liyongzhong computedtomographyimagefeaturesunderconvolutionalneuralnetworkalgorithminanalysisofinflammatoryfactorlevelandprognosisofpatientswithhepatitisbvirusassociatedacuteonchronicliverfailure |