Cargando…

Multidimensional predictors of antidepressant responses: Integrating mitochondrial, genetic, metabolic and environmental factors with clinical outcomes

Major depressive disorder (MDD) is a primary psychiatric illness worldwide; there is a dearth of new mechanistic models for the development of better therapeutic strategies. Although we continue to discover individual biological factors, a major challenge is the identification of integrated, multidi...

Descripción completa

Detalles Bibliográficos
Autores principales: Nasca, Carla, Barnhill, Olivia, DeAngelis, Paolo, Watson, Kathleen, Lin, Jue, Beasley, James, Young, Sarah P., Myoraku, Alison, Dobbin, Josh, Bigio, Benedetta, McEwen, Bruce, Rasgon, Natalie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8592929/
https://www.ncbi.nlm.nih.gov/pubmed/34815985
http://dx.doi.org/10.1016/j.ynstr.2021.100407
_version_ 1784599589181980672
author Nasca, Carla
Barnhill, Olivia
DeAngelis, Paolo
Watson, Kathleen
Lin, Jue
Beasley, James
Young, Sarah P.
Myoraku, Alison
Dobbin, Josh
Bigio, Benedetta
McEwen, Bruce
Rasgon, Natalie
author_facet Nasca, Carla
Barnhill, Olivia
DeAngelis, Paolo
Watson, Kathleen
Lin, Jue
Beasley, James
Young, Sarah P.
Myoraku, Alison
Dobbin, Josh
Bigio, Benedetta
McEwen, Bruce
Rasgon, Natalie
author_sort Nasca, Carla
collection PubMed
description Major depressive disorder (MDD) is a primary psychiatric illness worldwide; there is a dearth of new mechanistic models for the development of better therapeutic strategies. Although we continue to discover individual biological factors, a major challenge is the identification of integrated, multidimensional traits underlying the complex heterogeneity of depression and treatment outcomes. Here, we set out to ascertain the emergence of the novel mitochondrial mediator of epigenetic function acetyl-L-carnitine (LAC) in relation to previously described individual predictors of antidepressant responses to the insulin-sensitizing agent pioglitazone. Herein, we report that i) subjects with MDD and shorter leukocyte telomere length (LTL) show decreased levels of LAC, increased BMI, and a history of specific types of childhood trauma; and that ii) these multidimensional factors spanning mitochondrial metabolism, cellular aging, metabolic function, and childhood trauma provide more detailed signatures to predict longitudinal changes in depression severity in response to pioglitazone than individual factors. The findings of multidimensional signatures involved in the pathophysiology of depression and their role in predicting treatment outcomes provide a starting point for the development of a mechanistic framework linking biological networks and environmental factors to clinical outcomes in pursuit of personalized medicine strategies to effectively treat MDD.
format Online
Article
Text
id pubmed-8592929
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-85929292021-11-22 Multidimensional predictors of antidepressant responses: Integrating mitochondrial, genetic, metabolic and environmental factors with clinical outcomes Nasca, Carla Barnhill, Olivia DeAngelis, Paolo Watson, Kathleen Lin, Jue Beasley, James Young, Sarah P. Myoraku, Alison Dobbin, Josh Bigio, Benedetta McEwen, Bruce Rasgon, Natalie Neurobiol Stress Original Research Article Major depressive disorder (MDD) is a primary psychiatric illness worldwide; there is a dearth of new mechanistic models for the development of better therapeutic strategies. Although we continue to discover individual biological factors, a major challenge is the identification of integrated, multidimensional traits underlying the complex heterogeneity of depression and treatment outcomes. Here, we set out to ascertain the emergence of the novel mitochondrial mediator of epigenetic function acetyl-L-carnitine (LAC) in relation to previously described individual predictors of antidepressant responses to the insulin-sensitizing agent pioglitazone. Herein, we report that i) subjects with MDD and shorter leukocyte telomere length (LTL) show decreased levels of LAC, increased BMI, and a history of specific types of childhood trauma; and that ii) these multidimensional factors spanning mitochondrial metabolism, cellular aging, metabolic function, and childhood trauma provide more detailed signatures to predict longitudinal changes in depression severity in response to pioglitazone than individual factors. The findings of multidimensional signatures involved in the pathophysiology of depression and their role in predicting treatment outcomes provide a starting point for the development of a mechanistic framework linking biological networks and environmental factors to clinical outcomes in pursuit of personalized medicine strategies to effectively treat MDD. Elsevier 2021-10-09 /pmc/articles/PMC8592929/ /pubmed/34815985 http://dx.doi.org/10.1016/j.ynstr.2021.100407 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Original Research Article
Nasca, Carla
Barnhill, Olivia
DeAngelis, Paolo
Watson, Kathleen
Lin, Jue
Beasley, James
Young, Sarah P.
Myoraku, Alison
Dobbin, Josh
Bigio, Benedetta
McEwen, Bruce
Rasgon, Natalie
Multidimensional predictors of antidepressant responses: Integrating mitochondrial, genetic, metabolic and environmental factors with clinical outcomes
title Multidimensional predictors of antidepressant responses: Integrating mitochondrial, genetic, metabolic and environmental factors with clinical outcomes
title_full Multidimensional predictors of antidepressant responses: Integrating mitochondrial, genetic, metabolic and environmental factors with clinical outcomes
title_fullStr Multidimensional predictors of antidepressant responses: Integrating mitochondrial, genetic, metabolic and environmental factors with clinical outcomes
title_full_unstemmed Multidimensional predictors of antidepressant responses: Integrating mitochondrial, genetic, metabolic and environmental factors with clinical outcomes
title_short Multidimensional predictors of antidepressant responses: Integrating mitochondrial, genetic, metabolic and environmental factors with clinical outcomes
title_sort multidimensional predictors of antidepressant responses: integrating mitochondrial, genetic, metabolic and environmental factors with clinical outcomes
topic Original Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8592929/
https://www.ncbi.nlm.nih.gov/pubmed/34815985
http://dx.doi.org/10.1016/j.ynstr.2021.100407
work_keys_str_mv AT nascacarla multidimensionalpredictorsofantidepressantresponsesintegratingmitochondrialgeneticmetabolicandenvironmentalfactorswithclinicaloutcomes
AT barnhillolivia multidimensionalpredictorsofantidepressantresponsesintegratingmitochondrialgeneticmetabolicandenvironmentalfactorswithclinicaloutcomes
AT deangelispaolo multidimensionalpredictorsofantidepressantresponsesintegratingmitochondrialgeneticmetabolicandenvironmentalfactorswithclinicaloutcomes
AT watsonkathleen multidimensionalpredictorsofantidepressantresponsesintegratingmitochondrialgeneticmetabolicandenvironmentalfactorswithclinicaloutcomes
AT linjue multidimensionalpredictorsofantidepressantresponsesintegratingmitochondrialgeneticmetabolicandenvironmentalfactorswithclinicaloutcomes
AT beasleyjames multidimensionalpredictorsofantidepressantresponsesintegratingmitochondrialgeneticmetabolicandenvironmentalfactorswithclinicaloutcomes
AT youngsarahp multidimensionalpredictorsofantidepressantresponsesintegratingmitochondrialgeneticmetabolicandenvironmentalfactorswithclinicaloutcomes
AT myorakualison multidimensionalpredictorsofantidepressantresponsesintegratingmitochondrialgeneticmetabolicandenvironmentalfactorswithclinicaloutcomes
AT dobbinjosh multidimensionalpredictorsofantidepressantresponsesintegratingmitochondrialgeneticmetabolicandenvironmentalfactorswithclinicaloutcomes
AT bigiobenedetta multidimensionalpredictorsofantidepressantresponsesintegratingmitochondrialgeneticmetabolicandenvironmentalfactorswithclinicaloutcomes
AT mcewenbruce multidimensionalpredictorsofantidepressantresponsesintegratingmitochondrialgeneticmetabolicandenvironmentalfactorswithclinicaloutcomes
AT rasgonnatalie multidimensionalpredictorsofantidepressantresponsesintegratingmitochondrialgeneticmetabolicandenvironmentalfactorswithclinicaloutcomes