Cargando…
A model for learning based on the joint estimation of stochasticity and volatility
Previous research has stressed the importance of uncertainty for controlling the speed of learning, and how such control depends on the learner inferring the noise properties of the environment, especially volatility: the speed of change. However, learning rates are jointly determined by the compari...
Autores principales: | Piray, Payam, Daw, Nathaniel D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8592992/ https://www.ncbi.nlm.nih.gov/pubmed/34782597 http://dx.doi.org/10.1038/s41467-021-26731-9 |
Ejemplares similares
-
A simple model for learning in volatile environments
por: Piray, Payam, et al.
Publicado: (2020) -
Linear reinforcement learning in planning, grid fields, and cognitive control
por: Piray, Payam, et al.
Publicado: (2021) -
Hierarchical Bayesian inference for concurrent model fitting and comparison for group studies
por: Piray, Payam, et al.
Publicado: (2019) -
A multivariate threshold stochastic volatility model
por: So, Mike K.P., et al.
Publicado: (2008) -
Multivariate stochastic volatility modeling of neural data
por: Phan, Tung D, et al.
Publicado: (2019)