Cargando…

Lipid profile migration during the tilapia muscle steaming process revealed by a transactional analysis between MS data and lipidomics data

In this work, lipid profile migration from muscle to juice during the tilapia muscle steaming process was revealed by a transactional analysis of data from ultra-high-performance liquid chromatography coupled with Q Exactive (UHPLC-QE) Orbitrap mass spectrometry (MS) and lipidomics. Firstly, the lip...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Rui, Wu, Tingting, Guo, Hao, Xu, Jiamin, Chen, Jiahui, Tao, Ningping, Wang, Xichang, Zhong, Jian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8593017/
https://www.ncbi.nlm.nih.gov/pubmed/34782644
http://dx.doi.org/10.1038/s41538-021-00115-1
Descripción
Sumario:In this work, lipid profile migration from muscle to juice during the tilapia muscle steaming process was revealed by a transactional analysis of data from ultra-high-performance liquid chromatography coupled with Q Exactive (UHPLC-QE) Orbitrap mass spectrometry (MS) and lipidomics. Firstly, the lipids in tilapia muscles and juices at different steaming time points were extracted and examined by UHPLC-QE Orbitrap mass spectrometry. Secondly, a transactional analysis procedure was developed to analyze the data from UHPLC-QE Orbitrap MS and lipidomics. Finally, the corrected lipidomics data and the normalized MS data were used for lipid migration analysis. The results suggested that the transactional analysis procedure was efficient to significantly decrease UHPLC-QE Orbitrap MS workloads and delete the false-positive data (22.4–36.7%) in lipidomics data, which compensated the disadvantages of the current lipidomics method. The lipid changes could be disappearance, full migration into juice, appearance in juice, appearance in muscle, appearance in both muscle and juice, and retention in the muscle. Moreover, the results showed 9 (compared with 52), 5 (compared with 116), and 10 (compared with 178) of lipid class (compared with individual lipid) variables showed significant differences among the different steaming times (0, 10, 30, and 60 min) in all the muscles, juices, and muscle-juice systems, respectively. These results showed significant lipid profile migration from muscle to juice during the tilapia steaming process.