Cargando…
Use ggbreak to Effectively Utilize Plotting Space to Deal With Large Datasets and Outliers
With the rapid increase of large-scale datasets, biomedical data visualization is facing challenges. The data may be large, have different orders of magnitude, contain extreme values, and the data distribution is not clear. Here we present an R package ggbreak that allows users to create broken axes...
Autores principales: | Xu, Shuangbin, Chen, Meijun, Feng, Tingze, Zhan, Li, Zhou, Lang, Yu, Guangchuang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8593043/ https://www.ncbi.nlm.nih.gov/pubmed/34795698 http://dx.doi.org/10.3389/fgene.2021.774846 |
Ejemplares similares
-
MicrobiotaProcess: A comprehensive R package for deep mining microbiome
por: Xu, Shuangbin, et al.
Publicado: (2023) -
clusterProfiler 4.0: A universal enrichment tool for interpreting omics data
por: Wu, Tianzhi, et al.
Publicado: (2021) -
ggtreeExtra: Compact Visualization of Richly Annotated Phylogenetic Data
por: Xu, Shuangbin, et al.
Publicado: (2021) -
The hazards of dealing with response time outliers
por: Vankov, Ivan I.
Publicado: (2023) -
Characterization of toxin-antitoxin systems from public sequencing data: A case study in Pseudomonas aeruginosa
por: Dai, Zehan, et al.
Publicado: (2022)