Cargando…
Comparison of Initial Stability of Oblong, Large Circular, and Multiple-Plug “Snowman” Osteochondral Autografts for Elongated Focal Cartilage Lesions: A Biomechanical Study in a Porcine Model
BACKGROUND: Distal femoral osteochondral allograft transplantation (OAT) is an effective treatment of osteochondral lesions in the knee measuring >2 cm(2) in select patients. Prior studies have demonstrated that the morphology of the plug can affect graft-host interference fit. To our knowledge,...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8593298/ https://www.ncbi.nlm.nih.gov/pubmed/34796239 http://dx.doi.org/10.1177/23259671211044993 |
Sumario: | BACKGROUND: Distal femoral osteochondral allograft transplantation (OAT) is an effective treatment of osteochondral lesions in the knee measuring >2 cm(2) in select patients. Prior studies have demonstrated that the morphology of the plug can affect graft-host interference fit. To our knowledge, there are no data comparing the initial biomechanical stability of standard cylindrical plugs with multiple-plug and oblong-plug morphologies. HYPOTHESIS: Large cylindrical single-plug (LCSP) and oblong single-plug (OSP) grafts will have greater pull-out strength, and therefore greater initial stability, than multiple-plug (MP) grafts in a cadaveric porcine femur model. STUDY DESIGN: Controlled laboratory study. METHODS: A total of 55 porcine distal femurs were divided into 3 groups—LCSP (n = 18), OSP (n = 19), and MP (n = 18)—according to the plug morphology used. The method of graft harvesting and implantation was based on technique guides for the respective implant systems. The sizes (length × width × depth) of the osteochondral defects created in each of the groups were approximately 20.2 × 20.2 × 9.4–mm for the LCSP group, 14.4 × 30.5 × 7.9–mm for the OSP group, and 14.8 × 14.8 × 9.9–mm for the MP group. Tensile testing was performed on each graft to determine pull-out strength. RESULTS: The pull-out strength was significantly lower in the OSP group (65.7 N) versus the LCSP (133 N; P = .0005) and the MP (117.6 N; P = .001) groups. There was no statistically significant difference in pull-out strength between the LCSP and MP groups (P = .42). There were no statistically significant differences in displacement at maximum load among any 2 of the 3 groups. CONCLUSION: These findings suggest that while initial stability may play a role in the clinical outcomes of osteochondral allograft (OCA) implantation, the biological milieu in vivo for each graft setting perhaps has a greater impact on the success of an OAT procedure. Further study is needed on the relationship between OCA biomechanics and clinical outcomes of OAT. |
---|