Cargando…
Impact of electron–phonon coupling on electron transport through T-shaped arrangements of quantum dots in the Kondo regime
We calculate the conductance through strongly correlated T-shaped molecular or quantum dot systems under the influence of phonons. The system is modelled by the extended Anderson–Holstein Hamiltonian. The finite-U mean-field slave boson approach is used to study many-body effects. Phonons influence...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Beilstein-Institut
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8593695/ https://www.ncbi.nlm.nih.gov/pubmed/34858774 http://dx.doi.org/10.3762/bjnano.12.89 |
Sumario: | We calculate the conductance through strongly correlated T-shaped molecular or quantum dot systems under the influence of phonons. The system is modelled by the extended Anderson–Holstein Hamiltonian. The finite-U mean-field slave boson approach is used to study many-body effects. Phonons influence both interference and correlations. Depending on the dot unperturbed energy and the strength of electron–phonon interaction, the system is occupied by a different number of electrons that effectively interact with each other repulsively or attractively. This leads, together with the interference effects, to different spin or charge Fano–Kondo effects. |
---|