Cargando…
Cross-property deep transfer learning framework for enhanced predictive analytics on small materials data
Artificial intelligence (AI) and machine learning (ML) have been increasingly used in materials science to build predictive models and accelerate discovery. For selected properties, availability of large databases has also facilitated application of deep learning (DL) and transfer learning (TL). How...
Autores principales: | Gupta, Vishu, Choudhary, Kamal, Tavazza, Francesca, Campbell, Carelyn, Liao, Wei-keng, Choudhary, Alok, Agrawal, Ankit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8594437/ https://www.ncbi.nlm.nih.gov/pubmed/34782631 http://dx.doi.org/10.1038/s41467-021-26921-5 |
Ejemplares similares
-
Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning
por: Jha, Dipendra, et al.
Publicado: (2019) -
Author Correction: Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning
por: Jha, Dipendra, et al.
Publicado: (2020) -
MPpredictor: An
Artificial Intelligence-Driven Web
Tool for Composition-Based Material Property Prediction
por: Gupta, Vishu, et al.
Publicado: (2023) -
Improving deep learning model performance under parametric constraints for materials informatics applications
por: Gupta, Vishu, et al.
Publicado: (2023) -
Moving closer to experimental level materials property prediction using AI
por: Jha, Dipendra, et al.
Publicado: (2022)