Cargando…
Data Assimilation by Stochastic Ensemble Kalman Filtering to Enhance Turbulent Cardiovascular Flow Data From Under-Resolved Observations
We propose a data assimilation methodology that can be used to enhance the spatial and temporal resolution of voxel-based data as it may be obtained from biomedical imaging modalities. It can be used to improve the assessment of turbulent blood flow in large vessels by combining observed data with a...
Autores principales: | De Marinis, Dario, Obrist, Dominik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8594566/ https://www.ncbi.nlm.nih.gov/pubmed/34796213 http://dx.doi.org/10.3389/fcvm.2021.742110 |
Ejemplares similares
-
Data assimilation: the ensemble Kalman filter
por: Evensen, Geir
Publicado: (2007) -
Development of an ensemble Kalman filter data assimilation system for the Venusian atmosphere
por: Sugimoto, Norihiko, et al.
Publicado: (2017) -
Characterization of Turbulent Flow Behind a Transcatheter Aortic Valve in Different Implantation Positions
por: Pietrasanta, Leonardo, et al.
Publicado: (2022) -
MATLAB algorithm to implement soil water data assimilation with the Ensemble Kalman Filter using HYDRUS
por: Valdes-Abellan, Javier, et al.
Publicado: (2018) -
Data-assimilation and state estimation for contact-based spreading processes using the ensemble kalman filter: Application to COVID-19
por: Schaum, A., et al.
Publicado: (2022)