Cargando…
Balancing Data on Deep Learning-Based Proteochemometric Activity Classification
[Image: see text] In silico analysis of biological activity data has become an essential technique in pharmaceutical development. Specifically, the so-called proteochemometric models aim to share information between targets in machine learning ligand–target activity prediction models. However, bioac...
Autores principales: | Lopez-del Rio, Angela, Picart-Armada, Sergio, Perera-Lluna, Alexandre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8594867/ https://www.ncbi.nlm.nih.gov/pubmed/33779173 http://dx.doi.org/10.1021/acs.jcim.1c00086 |
Ejemplares similares
-
FELLA: an R package to enrich metabolomics data
por: Picart-Armada, Sergio, et al.
Publicado: (2018) -
Effect of sequence padding on the performance of deep learning models in archaeal protein functional prediction
por: Lopez-del Rio, Angela, et al.
Publicado: (2020) -
Null diffusion-based enrichment for metabolomics data
por: Picart-Armada, Sergio, et al.
Publicado: (2017) -
Benchmarking network propagation methods for disease gene identification
por: Picart-Armada, Sergio, et al.
Publicado: (2019) -
MultiPaths: a Python framework for analyzing multi-layer biological networks using diffusion algorithms
por: Marín-Llaó, Josep, et al.
Publicado: (2020)