Cargando…

Noninvasive Prototype for Type 2 Diabetes Detection

The present work demonstrates the design and implementation of a human-safe, portable, noninvasive device capable of predicting type 2 diabetes, using electrical bioimpedance and biometric features to train an artificial learning machine using an active learning algorithm based on population selecti...

Descripción completa

Detalles Bibliográficos
Autores principales: Castillo García, Javier Ferney, Ortiz, Jesús Hamilton, Ibrahim Khalaf, Osamah, Valencia Hernández, Adrián David, Rodríguez Timaná, Luis Carlos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8594986/
https://www.ncbi.nlm.nih.gov/pubmed/34795886
http://dx.doi.org/10.1155/2021/8077665
_version_ 1784600095059083264
author Castillo García, Javier Ferney
Ortiz, Jesús Hamilton
Ibrahim Khalaf, Osamah
Valencia Hernández, Adrián David
Rodríguez Timaná, Luis Carlos
author_facet Castillo García, Javier Ferney
Ortiz, Jesús Hamilton
Ibrahim Khalaf, Osamah
Valencia Hernández, Adrián David
Rodríguez Timaná, Luis Carlos
author_sort Castillo García, Javier Ferney
collection PubMed
description The present work demonstrates the design and implementation of a human-safe, portable, noninvasive device capable of predicting type 2 diabetes, using electrical bioimpedance and biometric features to train an artificial learning machine using an active learning algorithm based on population selection. In addition, there is an API with a graphical interface that allows the prediction and storage of data when the characteristics of the person are sent. The results obtained show an accuracy higher than 90% with statistical significance (p < 0.05). The Kappa coefficient values were higher than 0.9, showing that the device has a good predictive capacity which would allow the screening process of type 2 diabetes. This development contributes to preventive medicine and makes it possible to determine at a low cost, comfortably, without medical preparation, and in less than 2 minutes whether a person has type 2 diabetes.
format Online
Article
Text
id pubmed-8594986
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-85949862021-11-17 Noninvasive Prototype for Type 2 Diabetes Detection Castillo García, Javier Ferney Ortiz, Jesús Hamilton Ibrahim Khalaf, Osamah Valencia Hernández, Adrián David Rodríguez Timaná, Luis Carlos J Healthc Eng Research Article The present work demonstrates the design and implementation of a human-safe, portable, noninvasive device capable of predicting type 2 diabetes, using electrical bioimpedance and biometric features to train an artificial learning machine using an active learning algorithm based on population selection. In addition, there is an API with a graphical interface that allows the prediction and storage of data when the characteristics of the person are sent. The results obtained show an accuracy higher than 90% with statistical significance (p < 0.05). The Kappa coefficient values were higher than 0.9, showing that the device has a good predictive capacity which would allow the screening process of type 2 diabetes. This development contributes to preventive medicine and makes it possible to determine at a low cost, comfortably, without medical preparation, and in less than 2 minutes whether a person has type 2 diabetes. Hindawi 2021-11-09 /pmc/articles/PMC8594986/ /pubmed/34795886 http://dx.doi.org/10.1155/2021/8077665 Text en Copyright © 2021 Javier Ferney Castillo García et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Castillo García, Javier Ferney
Ortiz, Jesús Hamilton
Ibrahim Khalaf, Osamah
Valencia Hernández, Adrián David
Rodríguez Timaná, Luis Carlos
Noninvasive Prototype for Type 2 Diabetes Detection
title Noninvasive Prototype for Type 2 Diabetes Detection
title_full Noninvasive Prototype for Type 2 Diabetes Detection
title_fullStr Noninvasive Prototype for Type 2 Diabetes Detection
title_full_unstemmed Noninvasive Prototype for Type 2 Diabetes Detection
title_short Noninvasive Prototype for Type 2 Diabetes Detection
title_sort noninvasive prototype for type 2 diabetes detection
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8594986/
https://www.ncbi.nlm.nih.gov/pubmed/34795886
http://dx.doi.org/10.1155/2021/8077665
work_keys_str_mv AT castillogarciajavierferney noninvasiveprototypefortype2diabetesdetection
AT ortizjesushamilton noninvasiveprototypefortype2diabetesdetection
AT ibrahimkhalafosamah noninvasiveprototypefortype2diabetesdetection
AT valenciahernandezadriandavid noninvasiveprototypefortype2diabetesdetection
AT rodrigueztimanaluiscarlos noninvasiveprototypefortype2diabetesdetection