Cargando…

Anti-Inflammatory Effects of Lagerstroemia ovalifolia Teijsm. & Binn. in TNFα/IFNγ-Stimulated Keratinocytes

Ethnopharmacological Relevance. Atopic dermatitis is a chronic inflammatory skin disease. Lagerstroemia ovalifolia Teijsm. & Binn. (LO) has traditionally been used as an herbal medicine for anti-inflammatory diseases. The effect of LO on atopic dermatitis has not been verified scientifically. We...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Han-Sol, Paik, Jin-Hyub, Kwon, Ok-Kyoung, Paryanto, Imam, Yuniato, Prasetyawan, Ryu, Hyung Won, Choi, Sang-Ho, Oh, Sei-Ryang, Han, Sang-Bae, Park, Ji-Won, Ahn, Kyung-Seop
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8594990/
https://www.ncbi.nlm.nih.gov/pubmed/34795780
http://dx.doi.org/10.1155/2021/2439231
Descripción
Sumario:Ethnopharmacological Relevance. Atopic dermatitis is a chronic inflammatory skin disease. Lagerstroemia ovalifolia Teijsm. & Binn. (LO) has traditionally been used as an herbal medicine for anti-inflammatory diseases. The effect of LO on atopic dermatitis has not been verified scientifically. We investigated the effects of CHCl(3) fraction number 5 of LO (LOC) on atopic dermatitis through cell-based experiments. HaCaT cells were treated with tumor necrosis factor-alpha (TNFα)/interferon-gamma (IFNγ) to induce an inflammatory reaction. Proinflammatory cytokines, interleukin- (IL-) 6, IL-8, and IL-1β and chemokines such as thymus and activation-regulated chemokine (TARC/CCL17), monocyte chemoattractant protein 1 (MCP1/CCL2), and macrophage-derived chemokine (MDC/CCL22) were measured by RT-PCR and ELISA. In addition, the degree of phosphorylation and activation of JAK/STAT1, PI3K/AKT, and nuclear factor-kappa B (NF-κB) were measured by western blot and luciferase assays. The production of inflammatory cytokines and chemokines and activation of the JAK/STAT1, PI3K/AKT, and NF-κB pathways were induced by TNFα/IFNγ in HaCaT cells. Under these conditions, LOC treatment inhibited the production of targeted cytokines and chemokines and decreased the phosphorylation and activation of JAK/STAT1, PI3K/AKT, and NF-κB. These results suggest that LOC reduces the production of proinflammatory cytokines and chemokines by suppressing the JAK/STAT1, PI3K/AKT, and NF-κB pathways. Therefore, LOC may have potential as a drug for atopic dermatitis.