Cargando…
The Ensemble Machine Learning-Based Classification of Motor Imagery Tasks in Brain-Computer Interface
The Brain-Computer Interface (BCI) permits persons with impairments to interact with the real world without using the neuromuscular pathways. BCIs are based on artificial intelligence piloted systems. They collect brain activity patterns linked to the mental process and transform them into commands...
Autores principales: | Subasi, Abdulhamit, Mian Qaisar, Saeed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8595002/ https://www.ncbi.nlm.nih.gov/pubmed/34795879 http://dx.doi.org/10.1155/2021/1970769 |
Ejemplares similares
-
Comparison of Bagging and Boosting Ensemble Machine Learning Methods for Automated EMG Signal Classification
por: Yaman, Emine, et al.
Publicado: (2019) -
Electroencephalography-Based Brain–Computer Interface Motor Imagery Classification
por: Mohammadi, Ehsan, et al.
Publicado: (2021) -
Optimization of Task Allocation for Collaborative Brain–Computer Interface Based on Motor Imagery
por: Gu, Bin, et al.
Publicado: (2021) -
Practical machine learning for data analysis using Python
por: Subasi, Abdulhamit
Publicado: (2020) -
An Unsupervised Deep-Transfer-Learning-Based Motor Imagery EEG Classification Scheme for Brain–Computer Interface
por: Wang, Xuying, et al.
Publicado: (2022)