Cargando…
Parameter setting of meta-heuristic algorithms: a new hybrid method based on DEA and RSM
The parameter setting of meta-heuristic algorithms is one of the most effective issues in the performance of meta-heuristic algorithms and is usually done experimentally which is very time-consuming. In this research, a new hybrid method for selecting the optimal parameters of meta-heuristic algorit...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8595077/ https://www.ncbi.nlm.nih.gov/pubmed/34786624 http://dx.doi.org/10.1007/s11356-021-17364-y |
_version_ | 1784600118237855744 |
---|---|
author | Shadkam, Elham |
author_facet | Shadkam, Elham |
author_sort | Shadkam, Elham |
collection | PubMed |
description | The parameter setting of meta-heuristic algorithms is one of the most effective issues in the performance of meta-heuristic algorithms and is usually done experimentally which is very time-consuming. In this research, a new hybrid method for selecting the optimal parameters of meta-heuristic algorithms is presented. The proposed method is a combination of data envelopment analysis method and response surface methodology, called DSM. In addition to optimizing parameters, it also simultaneously maximizes efficiency. In this research, the hybrid DSM method has been used to set the parameters of the cuckoo optimization algorithm to optimize the standard and experimental functions of Ackley and Rastrigin. In addition to standard functions, in order to evaluate the performance of the proposed method in real problems, the parameter of reverse logistics problem for COVID-19 waste management has been adjusted using the DSM method, and the results show better performance of the DSM method in terms of solution time, number of iterations, efficiency, and accuracy of the objective function compared to other. |
format | Online Article Text |
id | pubmed-8595077 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-85950772021-11-17 Parameter setting of meta-heuristic algorithms: a new hybrid method based on DEA and RSM Shadkam, Elham Environ Sci Pollut Res Int Research Article The parameter setting of meta-heuristic algorithms is one of the most effective issues in the performance of meta-heuristic algorithms and is usually done experimentally which is very time-consuming. In this research, a new hybrid method for selecting the optimal parameters of meta-heuristic algorithms is presented. The proposed method is a combination of data envelopment analysis method and response surface methodology, called DSM. In addition to optimizing parameters, it also simultaneously maximizes efficiency. In this research, the hybrid DSM method has been used to set the parameters of the cuckoo optimization algorithm to optimize the standard and experimental functions of Ackley and Rastrigin. In addition to standard functions, in order to evaluate the performance of the proposed method in real problems, the parameter of reverse logistics problem for COVID-19 waste management has been adjusted using the DSM method, and the results show better performance of the DSM method in terms of solution time, number of iterations, efficiency, and accuracy of the objective function compared to other. Springer Berlin Heidelberg 2021-11-17 2022 /pmc/articles/PMC8595077/ /pubmed/34786624 http://dx.doi.org/10.1007/s11356-021-17364-y Text en © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
spellingShingle | Research Article Shadkam, Elham Parameter setting of meta-heuristic algorithms: a new hybrid method based on DEA and RSM |
title | Parameter setting of meta-heuristic algorithms: a new hybrid method based on DEA and RSM |
title_full | Parameter setting of meta-heuristic algorithms: a new hybrid method based on DEA and RSM |
title_fullStr | Parameter setting of meta-heuristic algorithms: a new hybrid method based on DEA and RSM |
title_full_unstemmed | Parameter setting of meta-heuristic algorithms: a new hybrid method based on DEA and RSM |
title_short | Parameter setting of meta-heuristic algorithms: a new hybrid method based on DEA and RSM |
title_sort | parameter setting of meta-heuristic algorithms: a new hybrid method based on dea and rsm |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8595077/ https://www.ncbi.nlm.nih.gov/pubmed/34786624 http://dx.doi.org/10.1007/s11356-021-17364-y |
work_keys_str_mv | AT shadkamelham parametersettingofmetaheuristicalgorithmsanewhybridmethodbasedondeaandrsm |