Cargando…
Planar random-cluster model: fractal properties of the critical phase
This paper is studying the critical regime of the planar random-cluster model on [Formula: see text] with cluster-weight [Formula: see text] . More precisely, we prove crossing estimates in quads which are uniform in their boundary conditions and depend only on their extremal lengths. They imply in...
Autores principales: | Duminil-Copin, Hugo, Manolescu, Ioan, Tassion, Vincent |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8595197/ https://www.ncbi.nlm.nih.gov/pubmed/34840372 http://dx.doi.org/10.1007/s00440-021-01060-6 |
Ejemplares similares
-
On the Six-Vertex Model’s Free Energy
por: Duminil-Copin, Hugo, et al.
Publicado: (2022) -
Exponential Decay of Truncated Correlations for the Ising Model in any Dimension for all but the Critical Temperature
por: Duminil-Copin, Hugo, et al.
Publicado: (2019) -
Dimerization and Néel Order in Different Quantum Spin Chains Through a Shared Loop Representation
por: Aizenman, Michael, et al.
Publicado: (2020) -
Criticality, fractality and intermittency in strong interactions
por: Antoniou, N.G., et al.
Publicado: (1994) -
Fractal Modeling and Fractal Dimension Description of Urban Morphology
por: Chen, Yanguang
Publicado: (2020)