Cargando…
Machine learning for detection of stenoses and aneurysms: application in a physiologically realistic virtual patient database
This study presents an application of machine learning (ML) methods for detecting the presence of stenoses and aneurysms in the human arterial system. Four major forms of arterial disease—carotid artery stenosis (CAS), subclavian artery stenosis (SAS), peripheral arterial disease (PAD), and abdomina...
Autores principales: | Jones, G., Parr, J., Nithiarasu, P., Pant, S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8595223/ https://www.ncbi.nlm.nih.gov/pubmed/34333696 http://dx.doi.org/10.1007/s10237-021-01497-7 |
Ejemplares similares
-
A proof of concept study for machine learning application to stenosis detection
por: Jones, Gareth, et al.
Publicado: (2021) -
Virtual colonoscopy in stenosing colorectal cancer
por: Coccetta, Marco, et al.
Publicado: (2009) -
A semi‐active human digital twin model for detecting severity of carotid stenoses from head vibration—A coupled computational mechanics and computer vision method
por: Chakshu, Neeraj Kavan, et al.
Publicado: (2019) -
Computational instantaneous wave‐free ratio (IFR) for patient‐specific coronary artery stenoses using 1D network models
por: Carson, Jason M., et al.
Publicado: (2019) -
The Impact of Age on the Physiological Assessment of Borderline Coronary Stenoses
por: Zasada, Wojciech, et al.
Publicado: (2023)