Cargando…
Cortical Thickness of Brain Areas Beyond Stroke Lesions and Sensory-Motor Recovery: A Systematic Review
Background: The clinical outcome of patients suffering from stroke is dependent on multiple factors. The features of the lesion itself play an important role but clinical recovery is remarkably influenced by the plasticity mechanisms triggered by the stroke and occurring at a distance from the lesio...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8595399/ https://www.ncbi.nlm.nih.gov/pubmed/34803596 http://dx.doi.org/10.3389/fnins.2021.764671 |
_version_ | 1784600194720989184 |
---|---|
author | Cortese, Anna Maria Cacciante, Luisa Schuler, Anna-Lisa Turolla, Andrea Pellegrino, Giovanni |
author_facet | Cortese, Anna Maria Cacciante, Luisa Schuler, Anna-Lisa Turolla, Andrea Pellegrino, Giovanni |
author_sort | Cortese, Anna Maria |
collection | PubMed |
description | Background: The clinical outcome of patients suffering from stroke is dependent on multiple factors. The features of the lesion itself play an important role but clinical recovery is remarkably influenced by the plasticity mechanisms triggered by the stroke and occurring at a distance from the lesion. The latter translate into functional and structural changes of which cortical thickness might be easy to quantify one of the main players. However, studies on the changes of cortical thickness in brain areas beyond stroke lesion and their relationship to sensory-motor recovery are sparse. Objectives: To evaluate the effects of cerebral stroke on cortical thickness (CT) beyond the stroke lesion and its association with sensory-motor recovery. Materials and Methods: Five electronic databases (PubMed, Embase, Web of Science, Scopus and the Cochrane Library) were searched. Methodological quality of the included studies was assessed with the Newcastle-Ottawa Scale for non-randomized controlled trials and the Risk of Bias Cochrane tool for randomized controlled trials. Results: The search strategy retrieved 821 records, 12 studies were included and risk of bias assessed. In most of the included studies, cortical thinning was seen at the ipsilesional motor area (M1). Cortical thinning can occur beyond the stroke lesion, typically in regions anatomically connected because of anterograde degeneration. Nonetheless, studies also reported cortical thickening of regions of the unaffected hemisphere, likely related to compensatory plasticity. Some studies revealed a significant correlation between changes in cortical thickness of M1 or somatosensory (S1) cortical areas and motor function recovery. Discussion and Conclusions: Following a stroke, changes in cortical thickness occur both in regions directly connected to the stroke lesion and in contralateral hemisphere areas as well as in the cerebellum. The underlying mechanisms leading to these changes in cortical thickness are still to be fully understood and further research in the field is needed. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020200539; PROSPERO 2020, identifier: CRD42020200539. |
format | Online Article Text |
id | pubmed-8595399 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-85953992021-11-18 Cortical Thickness of Brain Areas Beyond Stroke Lesions and Sensory-Motor Recovery: A Systematic Review Cortese, Anna Maria Cacciante, Luisa Schuler, Anna-Lisa Turolla, Andrea Pellegrino, Giovanni Front Neurosci Neuroscience Background: The clinical outcome of patients suffering from stroke is dependent on multiple factors. The features of the lesion itself play an important role but clinical recovery is remarkably influenced by the plasticity mechanisms triggered by the stroke and occurring at a distance from the lesion. The latter translate into functional and structural changes of which cortical thickness might be easy to quantify one of the main players. However, studies on the changes of cortical thickness in brain areas beyond stroke lesion and their relationship to sensory-motor recovery are sparse. Objectives: To evaluate the effects of cerebral stroke on cortical thickness (CT) beyond the stroke lesion and its association with sensory-motor recovery. Materials and Methods: Five electronic databases (PubMed, Embase, Web of Science, Scopus and the Cochrane Library) were searched. Methodological quality of the included studies was assessed with the Newcastle-Ottawa Scale for non-randomized controlled trials and the Risk of Bias Cochrane tool for randomized controlled trials. Results: The search strategy retrieved 821 records, 12 studies were included and risk of bias assessed. In most of the included studies, cortical thinning was seen at the ipsilesional motor area (M1). Cortical thinning can occur beyond the stroke lesion, typically in regions anatomically connected because of anterograde degeneration. Nonetheless, studies also reported cortical thickening of regions of the unaffected hemisphere, likely related to compensatory plasticity. Some studies revealed a significant correlation between changes in cortical thickness of M1 or somatosensory (S1) cortical areas and motor function recovery. Discussion and Conclusions: Following a stroke, changes in cortical thickness occur both in regions directly connected to the stroke lesion and in contralateral hemisphere areas as well as in the cerebellum. The underlying mechanisms leading to these changes in cortical thickness are still to be fully understood and further research in the field is needed. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020200539; PROSPERO 2020, identifier: CRD42020200539. Frontiers Media S.A. 2021-11-03 /pmc/articles/PMC8595399/ /pubmed/34803596 http://dx.doi.org/10.3389/fnins.2021.764671 Text en Copyright © 2021 Cortese, Cacciante, Schuler, Turolla and Pellegrino. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Cortese, Anna Maria Cacciante, Luisa Schuler, Anna-Lisa Turolla, Andrea Pellegrino, Giovanni Cortical Thickness of Brain Areas Beyond Stroke Lesions and Sensory-Motor Recovery: A Systematic Review |
title | Cortical Thickness of Brain Areas Beyond Stroke Lesions and Sensory-Motor Recovery: A Systematic Review |
title_full | Cortical Thickness of Brain Areas Beyond Stroke Lesions and Sensory-Motor Recovery: A Systematic Review |
title_fullStr | Cortical Thickness of Brain Areas Beyond Stroke Lesions and Sensory-Motor Recovery: A Systematic Review |
title_full_unstemmed | Cortical Thickness of Brain Areas Beyond Stroke Lesions and Sensory-Motor Recovery: A Systematic Review |
title_short | Cortical Thickness of Brain Areas Beyond Stroke Lesions and Sensory-Motor Recovery: A Systematic Review |
title_sort | cortical thickness of brain areas beyond stroke lesions and sensory-motor recovery: a systematic review |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8595399/ https://www.ncbi.nlm.nih.gov/pubmed/34803596 http://dx.doi.org/10.3389/fnins.2021.764671 |
work_keys_str_mv | AT corteseannamaria corticalthicknessofbrainareasbeyondstrokelesionsandsensorymotorrecoveryasystematicreview AT caccianteluisa corticalthicknessofbrainareasbeyondstrokelesionsandsensorymotorrecoveryasystematicreview AT schulerannalisa corticalthicknessofbrainareasbeyondstrokelesionsandsensorymotorrecoveryasystematicreview AT turollaandrea corticalthicknessofbrainareasbeyondstrokelesionsandsensorymotorrecoveryasystematicreview AT pellegrinogiovanni corticalthicknessofbrainareasbeyondstrokelesionsandsensorymotorrecoveryasystematicreview |