Cargando…
Revealing nonlinear neural decoding by analyzing choices
Sensory data about most natural task-relevant variables are entangled with task-irrelevant nuisance variables. The neurons that encode these relevant signals typically constitute a nonlinear population code. Here we present a theoretical framework for quantifying how the brain uses or decodes its no...
Autores principales: | Yang, Qianli, Walker, Edgar, Cotton, R. James, Tolias, Andreas S., Pitkow, Xaq |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8595442/ https://www.ncbi.nlm.nih.gov/pubmed/34785652 http://dx.doi.org/10.1038/s41467-021-26793-9 |
Ejemplares similares
-
Inferring decoding strategies for multiple correlated neural populations
por: Lakshminarasimhan, Kaushik J., et al.
Publicado: (2018) -
Understanding Robustness and Generalization of Artificial Neural Networks Through Fourier Masks
por: Karantzas, Nikos, et al.
Publicado: (2022) -
A Neural Computation for Visual Acuity in the Presence of Eye Movements
por: Pitkow, Xaq, et al.
Publicado: (2007) -
Robust deep learning object recognition models rely on low frequency information in natural images
por: Li, Zhe, et al.
Publicado: (2023) -
Decoding the neural dynamics of free choice in humans
por: Thiery, Thomas, et al.
Publicado: (2020)