Cargando…
Selective Cross-Subject Transfer Learning Based on Riemannian Tangent Space for Motor Imagery Brain-Computer Interface
A motor imagery (MI) brain-computer interface (BCI) plays an important role in the neurological rehabilitation training for stroke patients. Electroencephalogram (EEG)-based MI BCI has high temporal resolution, which is convenient for real-time BCI control. Therefore, we focus on EEG-based MI BCI in...
Autores principales: | Xu, Yilu, Huang, Xin, Lan, Quan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8595943/ https://www.ncbi.nlm.nih.gov/pubmed/34803600 http://dx.doi.org/10.3389/fnins.2021.779231 |
Ejemplares similares
-
Tangent space alignment: Transfer learning for Brain-Computer Interface
por: Bleuzé, Alexandre, et al.
Publicado: (2022) -
A New Subject-Specific Discriminative and Multi-Scale Filter Bank Tangent Space Mapping Method for Recognition of Multiclass Motor Imagery
por: Wu, Fan, et al.
Publicado: (2021) -
Increased motor cortex excitability during motor imagery in brain-computer interface trained subjects
por: Mokienko, Olesya A., et al.
Publicado: (2013) -
Dimensionality Reduction of SPD Data Based on Riemannian Manifold Tangent Spaces and Isometry
por: Gao, Wenxu, et al.
Publicado: (2021) -
Vividness of Visual Imagery and Personality Impact Motor-Imagery Brain Computer Interfaces
por: Leeuwis, Nikki, et al.
Publicado: (2021)