Cargando…

3D‐Zipped Interface: In Situ Covalent‐Locking for High Performance of Anion Exchange Membrane Fuel Cells

Polymer electrolyte membrane fuel cells can generate high power using a potentially green fuel (H(2)) and zero emissions of greenhouse gas (CO(2)). However, significant mass transport resistances in the interface region of the membrane electrode assemblies (MEAs), between the membrane and the cataly...

Descripción completa

Detalles Bibliográficos
Autores principales: Liang, Xian, Ge, Xiaolin, He, Yubin, Xu, Mai, Shehzad, Muhammad A., Sheng, Fangmeng, Bance‐Soualhi, Rachida, Zhang, Jianjun, Yu, Weisheng, Ge, Zijuan, Wei, Chengpeng, Song, Wanjie, Peng, Jinlan, Varcoe, John R., Wu, Liang, Xu, Tongwen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8596103/
https://www.ncbi.nlm.nih.gov/pubmed/34636177
http://dx.doi.org/10.1002/advs.202102637
_version_ 1784600289794326528
author Liang, Xian
Ge, Xiaolin
He, Yubin
Xu, Mai
Shehzad, Muhammad A.
Sheng, Fangmeng
Bance‐Soualhi, Rachida
Zhang, Jianjun
Yu, Weisheng
Ge, Zijuan
Wei, Chengpeng
Song, Wanjie
Peng, Jinlan
Varcoe, John R.
Wu, Liang
Xu, Tongwen
author_facet Liang, Xian
Ge, Xiaolin
He, Yubin
Xu, Mai
Shehzad, Muhammad A.
Sheng, Fangmeng
Bance‐Soualhi, Rachida
Zhang, Jianjun
Yu, Weisheng
Ge, Zijuan
Wei, Chengpeng
Song, Wanjie
Peng, Jinlan
Varcoe, John R.
Wu, Liang
Xu, Tongwen
author_sort Liang, Xian
collection PubMed
description Polymer electrolyte membrane fuel cells can generate high power using a potentially green fuel (H(2)) and zero emissions of greenhouse gas (CO(2)). However, significant mass transport resistances in the interface region of the membrane electrode assemblies (MEAs), between the membrane and the catalyst layers remains a barrier to achieving MEAs with high power densities and long‐term stabilities. Here, a 3D‐interfacial zipping concept is presented to overcome this challenge. Vinylbenzyl‐terminated bi‐cationic quaternary‐ammonium‐based polyelectrolyte is employed as both the anionomer in the anion‐exchange membrane (AEM) and catalyst layers. A quaternary‐ammonium‐containing covalently locked interface is formed by thermally induced inter‐crosslinking of the terminal vinyl groups. Ex situ evaluation of interfacial bonding strength and in situ durability tests demonstrate that this 3D‐zipped interface strategy prevents interfacial delamination without any sacrifice of fuel cell performance. A H(2)/O(2) AEMFC test demonstration shows promisingly high power densities (1.5 W cm(−2) at 70 °C with 100% RH and 0.2 MPa backpressure gas feeds), which can retain performances for at least 120 h at a usefully high current density of 0.6 A cm(−2).
format Online
Article
Text
id pubmed-8596103
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-85961032021-12-02 3D‐Zipped Interface: In Situ Covalent‐Locking for High Performance of Anion Exchange Membrane Fuel Cells Liang, Xian Ge, Xiaolin He, Yubin Xu, Mai Shehzad, Muhammad A. Sheng, Fangmeng Bance‐Soualhi, Rachida Zhang, Jianjun Yu, Weisheng Ge, Zijuan Wei, Chengpeng Song, Wanjie Peng, Jinlan Varcoe, John R. Wu, Liang Xu, Tongwen Adv Sci (Weinh) Research Articles Polymer electrolyte membrane fuel cells can generate high power using a potentially green fuel (H(2)) and zero emissions of greenhouse gas (CO(2)). However, significant mass transport resistances in the interface region of the membrane electrode assemblies (MEAs), between the membrane and the catalyst layers remains a barrier to achieving MEAs with high power densities and long‐term stabilities. Here, a 3D‐interfacial zipping concept is presented to overcome this challenge. Vinylbenzyl‐terminated bi‐cationic quaternary‐ammonium‐based polyelectrolyte is employed as both the anionomer in the anion‐exchange membrane (AEM) and catalyst layers. A quaternary‐ammonium‐containing covalently locked interface is formed by thermally induced inter‐crosslinking of the terminal vinyl groups. Ex situ evaluation of interfacial bonding strength and in situ durability tests demonstrate that this 3D‐zipped interface strategy prevents interfacial delamination without any sacrifice of fuel cell performance. A H(2)/O(2) AEMFC test demonstration shows promisingly high power densities (1.5 W cm(−2) at 70 °C with 100% RH and 0.2 MPa backpressure gas feeds), which can retain performances for at least 120 h at a usefully high current density of 0.6 A cm(−2). John Wiley and Sons Inc. 2021-10-11 /pmc/articles/PMC8596103/ /pubmed/34636177 http://dx.doi.org/10.1002/advs.202102637 Text en © 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Liang, Xian
Ge, Xiaolin
He, Yubin
Xu, Mai
Shehzad, Muhammad A.
Sheng, Fangmeng
Bance‐Soualhi, Rachida
Zhang, Jianjun
Yu, Weisheng
Ge, Zijuan
Wei, Chengpeng
Song, Wanjie
Peng, Jinlan
Varcoe, John R.
Wu, Liang
Xu, Tongwen
3D‐Zipped Interface: In Situ Covalent‐Locking for High Performance of Anion Exchange Membrane Fuel Cells
title 3D‐Zipped Interface: In Situ Covalent‐Locking for High Performance of Anion Exchange Membrane Fuel Cells
title_full 3D‐Zipped Interface: In Situ Covalent‐Locking for High Performance of Anion Exchange Membrane Fuel Cells
title_fullStr 3D‐Zipped Interface: In Situ Covalent‐Locking for High Performance of Anion Exchange Membrane Fuel Cells
title_full_unstemmed 3D‐Zipped Interface: In Situ Covalent‐Locking for High Performance of Anion Exchange Membrane Fuel Cells
title_short 3D‐Zipped Interface: In Situ Covalent‐Locking for High Performance of Anion Exchange Membrane Fuel Cells
title_sort 3d‐zipped interface: in situ covalent‐locking for high performance of anion exchange membrane fuel cells
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8596103/
https://www.ncbi.nlm.nih.gov/pubmed/34636177
http://dx.doi.org/10.1002/advs.202102637
work_keys_str_mv AT liangxian 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells
AT gexiaolin 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells
AT heyubin 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells
AT xumai 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells
AT shehzadmuhammada 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells
AT shengfangmeng 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells
AT bancesoualhirachida 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells
AT zhangjianjun 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells
AT yuweisheng 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells
AT gezijuan 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells
AT weichengpeng 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells
AT songwanjie 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells
AT pengjinlan 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells
AT varcoejohnr 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells
AT wuliang 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells
AT xutongwen 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells