Cargando…

Nematic Order, Plasmonic Switching and Self‐Patterning of Colloidal Gold Bipyramids

Dispersing inorganic colloidal nanoparticles within nematic liquid crystals provides a versatile platform both for forming new soft matter phases and for predefining physical behavior through mesoscale molecular‐colloidal self‐organization. However, owing to formation of particle‐induced singular de...

Descripción completa

Detalles Bibliográficos
Autores principales: Mai, Zhijian, Yuan, Ye, Tai, Jung‐Shen B., Senyuk, Bohdan, Liu, Bing, Li, Hao, Wang, Yao, Zhou, Guofu, Smalyukh, Ivan I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8596134/
https://www.ncbi.nlm.nih.gov/pubmed/34541830
http://dx.doi.org/10.1002/advs.202102854
Descripción
Sumario:Dispersing inorganic colloidal nanoparticles within nematic liquid crystals provides a versatile platform both for forming new soft matter phases and for predefining physical behavior through mesoscale molecular‐colloidal self‐organization. However, owing to formation of particle‐induced singular defects and complex elasticity‐mediated interactions, this approach has been implemented mainly just for colloidal nanorods and nanoplatelets, limiting its potential technological utility. Here, orientationally ordered nematic colloidal dispersions are reported of pentagonal gold bipyramids that exhibit narrow but controlled polarization‐dependent surface plasmon resonance spectra and facile electric switching. Bipyramids tend to orient with their C(5) rotation symmetry axes along the nematic director, exhibiting spatially homogeneous density within aligned samples. Topological solitons, like heliknotons, allow for spatial reorganization of these nanoparticles according to elastic free energy density within their micrometer‐scale structures. With the nanoparticle orientations slaved to the nematic director and being switched by low voltages ≈1 V within a fraction of a second, these plasmonic composite materials are of interest for technological uses like color filters and plasmonic polarizers, as well as may lead to the development of unusual nematic phases, like pentatic liquid crystals.