Cargando…

Digital Technologies in the Surgical Treatment of Post-Traumatic Zygomatico-Orbital Deformities

The aim of the study was to determine the efficacy of using digital technologies in patients with post-traumatic deformities of the zygomatico-orbital complex (ZOC) by comparing the results with the conventional methods of surgical treatment. MATERIALS AND METHODS. The article summarizes treatment r...

Descripción completa

Detalles Bibliográficos
Autores principales: Khomutinnikova, N.E., Durnovo, E.A., Vyseltseva, Yu.V., Gorbatov, R.O.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Privolzhsky Research Medical University 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8596248/
https://www.ncbi.nlm.nih.gov/pubmed/34795980
http://dx.doi.org/10.17691/stm2020.12.3.07
Descripción
Sumario:The aim of the study was to determine the efficacy of using digital technologies in patients with post-traumatic deformities of the zygomatico-orbital complex (ZOC) by comparing the results with the conventional methods of surgical treatment. MATERIALS AND METHODS. The article summarizes treatment results of 231 patients with ZOC injuries who underwent surgery at the clinical facilities of Privolzhsky Research Medical University (Nizhny Novgorod) in 2011–2019. There were treated 44.2% (102/231) of patients with post-traumatic deformities of ZOC, including 38.2% (39/102) with post-traumatic defects and deformities of the orbital floor. Based on clinical and radiological planning of surgical operations, the patients were divided into two groups: group 1 included patients who underwent surgery without preoperative virtual planning (54.9% (56/102) of cases), group 2 included patients who underwent virtually planned surgical interventions (45.1% (46/102) of cases). There were 22 and 17 patients with orbital deformities in groups 1 and 2, respectively. RESULTS. The optimal restoration of ZOC anatomy was observed in 75% (42/56) of patients in group 1 and 93.5% (43/46) of patients in group 2. During reconstruction of the orbital floor in patients of group 1, successful results were achieved in 68.2% (15/22) of cases and 88.2% (15/17) in group 2, various complications were observed in the rest of cases. Based on the analysis of surgical treatment results, there was developed a personalized approach to manufacturing of zygomatic bone and orbital floor implants using computer modeling and 3D printing technologies. CONCLUSION. In contrast to the conventional methods, the use of digital technologies in the surgical treatment of post-traumatic deformities of ZOC allows avoiding the problematic issues of implant positioning and the development of complications during reconstruction, significantly reducing surgical injury and improving patient rehabilitation.