Cargando…

Correction: Use of Deep Learning to Predict Acute Kidney Injury After Intravenous Contrast Media Administration: Prediction Model Development Study

Detalles Bibliográficos
Autores principales: Yun, Donghwan, Cho, Semin, Kim, Yong Chul, Kim, Dong Ki, Oh, Kook-Hwan, Joo, Kwon Wook, Kim, Yon Su, Han, Seung Seok
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8596285/
https://www.ncbi.nlm.nih.gov/pubmed/34727045
http://dx.doi.org/10.2196/34411
_version_ 1784600331960713216
author Yun, Donghwan
Cho, Semin
Kim, Yong Chul
Kim, Dong Ki
Oh, Kook-Hwan
Joo, Kwon Wook
Kim, Yon Su
Han, Seung Seok
author_facet Yun, Donghwan
Cho, Semin
Kim, Yong Chul
Kim, Dong Ki
Oh, Kook-Hwan
Joo, Kwon Wook
Kim, Yon Su
Han, Seung Seok
author_sort Yun, Donghwan
collection PubMed
description
format Online
Article
Text
id pubmed-8596285
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher JMIR Publications
record_format MEDLINE/PubMed
spelling pubmed-85962852021-12-07 Correction: Use of Deep Learning to Predict Acute Kidney Injury After Intravenous Contrast Media Administration: Prediction Model Development Study Yun, Donghwan Cho, Semin Kim, Yong Chul Kim, Dong Ki Oh, Kook-Hwan Joo, Kwon Wook Kim, Yon Su Han, Seung Seok JMIR Med Inform Corrigenda and Addenda JMIR Publications 2021-11-02 /pmc/articles/PMC8596285/ /pubmed/34727045 http://dx.doi.org/10.2196/34411 Text en ©Donghwan Yun, Semin Cho, Yong Chul Kim, Dong Ki Kim, Kook-Hwan Oh, Kwon Wook Joo, Yon Su Kim, Seung Seok Han. Originally published in JMIR Medical Informatics (https://medinform.jmir.org), 02.11.2021. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete bibliographic information, a link to the original publication on https://medinform.jmir.org/, as well as this copyright and license information must be included.
spellingShingle Corrigenda and Addenda
Yun, Donghwan
Cho, Semin
Kim, Yong Chul
Kim, Dong Ki
Oh, Kook-Hwan
Joo, Kwon Wook
Kim, Yon Su
Han, Seung Seok
Correction: Use of Deep Learning to Predict Acute Kidney Injury After Intravenous Contrast Media Administration: Prediction Model Development Study
title Correction: Use of Deep Learning to Predict Acute Kidney Injury After Intravenous Contrast Media Administration: Prediction Model Development Study
title_full Correction: Use of Deep Learning to Predict Acute Kidney Injury After Intravenous Contrast Media Administration: Prediction Model Development Study
title_fullStr Correction: Use of Deep Learning to Predict Acute Kidney Injury After Intravenous Contrast Media Administration: Prediction Model Development Study
title_full_unstemmed Correction: Use of Deep Learning to Predict Acute Kidney Injury After Intravenous Contrast Media Administration: Prediction Model Development Study
title_short Correction: Use of Deep Learning to Predict Acute Kidney Injury After Intravenous Contrast Media Administration: Prediction Model Development Study
title_sort correction: use of deep learning to predict acute kidney injury after intravenous contrast media administration: prediction model development study
topic Corrigenda and Addenda
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8596285/
https://www.ncbi.nlm.nih.gov/pubmed/34727045
http://dx.doi.org/10.2196/34411
work_keys_str_mv AT yundonghwan correctionuseofdeeplearningtopredictacutekidneyinjuryafterintravenouscontrastmediaadministrationpredictionmodeldevelopmentstudy
AT chosemin correctionuseofdeeplearningtopredictacutekidneyinjuryafterintravenouscontrastmediaadministrationpredictionmodeldevelopmentstudy
AT kimyongchul correctionuseofdeeplearningtopredictacutekidneyinjuryafterintravenouscontrastmediaadministrationpredictionmodeldevelopmentstudy
AT kimdongki correctionuseofdeeplearningtopredictacutekidneyinjuryafterintravenouscontrastmediaadministrationpredictionmodeldevelopmentstudy
AT ohkookhwan correctionuseofdeeplearningtopredictacutekidneyinjuryafterintravenouscontrastmediaadministrationpredictionmodeldevelopmentstudy
AT jookwonwook correctionuseofdeeplearningtopredictacutekidneyinjuryafterintravenouscontrastmediaadministrationpredictionmodeldevelopmentstudy
AT kimyonsu correctionuseofdeeplearningtopredictacutekidneyinjuryafterintravenouscontrastmediaadministrationpredictionmodeldevelopmentstudy
AT hanseungseok correctionuseofdeeplearningtopredictacutekidneyinjuryafterintravenouscontrastmediaadministrationpredictionmodeldevelopmentstudy