Cargando…
A Quantitative Evaluation of Global, Rule-Based Explanations of Post-Hoc, Model Agnostic Methods
Understanding the inferences of data-driven, machine-learned models can be seen as a process that discloses the relationships between their input and output. These relationships consist and can be represented as a set of inference rules. However, the models usually do not explicit these rules to the...
Autores principales: | Vilone, Giulia, Longo, Luca |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8596373/ https://www.ncbi.nlm.nih.gov/pubmed/34805973 http://dx.doi.org/10.3389/frai.2021.717899 |
Ejemplares similares
-
To trust or not to trust an explanation: using LEAF to evaluate local linear XAI methods
por: Amparore, Elvio, et al.
Publicado: (2021) -
Argumentation and explanation in the law
por: Rotolo, Antonino, et al.
Publicado: (2023) -
Editorial: Explanation in human-AI systems
por: Angelopoulou, Anastasia, et al.
Publicado: (2022) -
3Es for AI: Economics, Explanation, Epistemology
por: Kaul, Nitasha
Publicado: (2022) -
Leveraging explanations in interactive machine learning: An overview
por: Teso, Stefano, et al.
Publicado: (2023)