Cargando…
Improving breast cancer prediction using a pattern recognition network with optimal feature subsets
AIM: To predict the presence of breast cancer by using a pattern recognition network with optimal features based on routine blood analysis parameters and anthropometric data. METHODS: Sensitivity, specificity, accuracy, Matthews correlation coefficient (MCC), and Fowlkes-Mallows (FM) index of each m...
Autor principal: | Gündoğdu, Serdar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Croatian Medical Schools
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8596469/ https://www.ncbi.nlm.nih.gov/pubmed/34730888 http://dx.doi.org/10.3325/cmj.2021.62.480 |
Ejemplares similares
-
Efficient prediction of early-stage diabetes using XGBoost classifier with random forest feature selection technique
por: Gündoğdu, Serdar
Publicado: (2023) -
Optimized Feature Subset Selection Using Genetic Algorithm for Preterm Labor Prediction Based on Electrohysterography
por: Nieto-del-Amor, Félix, et al.
Publicado: (2021) -
Image Classification Using Biomimetic Pattern Recognition with Convolutional Neural Networks Features
por: Zhou, Liangji, et al.
Publicado: (2017) -
Raman spectral pattern recognition of breast cancer: A machine learning strategy based on feature fusion and adaptive hyperparameter optimization
por: Li, Qingbo, et al.
Publicado: (2023) -
Breast Cancer Classification Prediction Based on Ultrasonic Image Feature Recognition
por: Huang, Yihong, et al.
Publicado: (2021)