Cargando…
Estimating adjusted risk differences by multiply‐imputing missing control binary potential outcomes following propensity score‐matching
We describe a new method to combine propensity‐score matching with regression adjustment in treatment‐control studies when outcomes are binary by multiply imputing potential outcomes under control for the matched treated subjects. This enables the estimation of clinically meaningful measures of effe...
Autores principales: | Austin, Peter C., Rubin, Donald B., Thomas, Neal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8596520/ https://www.ncbi.nlm.nih.gov/pubmed/34374106 http://dx.doi.org/10.1002/sim.9141 |
Ejemplares similares
-
Covariate-adjusted survival analyses in propensity-score matched samples: Imputing potential time-to-event outcomes
por: Austin, Peter C, et al.
Publicado: (2018) -
Estimating the effect of treatment on binary outcomes using full matching on the propensity score
por: Austin, Peter C, et al.
Publicado: (2015) -
Logistic regression vs. predictive mean matching for imputing binary covariates
por: Austin, Peter C, et al.
Publicado: (2023) -
Imputation strategies for missing binary outcomes in cluster randomized trials
por: Ma, Jinhui, et al.
Publicado: (2011) -
Assessing the performance of the generalized propensity score for estimating the effect of quantitative or continuous exposures on binary outcomes
por: Austin, Peter C.
Publicado: (2018)