Cargando…
Thermoneutral N−H Bond Activation of Ammonia by a Geometrically Constrained Phosphine
A geometrically constrained phosphine bearing a tridentate NNS pincer ligand is reported. The effect of the geometric constraint on the electronic structure was probed by theoretical calculations and derivatization reactions. Reactions with N−H bonds result in formation of cooperative addition produ...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8596738/ https://www.ncbi.nlm.nih.gov/pubmed/34478227 http://dx.doi.org/10.1002/anie.202111017 |
Sumario: | A geometrically constrained phosphine bearing a tridentate NNS pincer ligand is reported. The effect of the geometric constraint on the electronic structure was probed by theoretical calculations and derivatization reactions. Reactions with N−H bonds result in formation of cooperative addition products. The thermochemistry of these transformations is strongly dependent on the substrate, with ammonia activation being thermoneutral. This represents the first example of a molecular compound that reversibly activates ammonia via N−H bond scission in solution upon mild heating. |
---|