Cargando…
Enhancing unsupervised medical entity linking with multi-instance learning
BACKGROUND: A lot of medical mentions can be extracted from a huge amount of medical texts. In order to make use of these medical mentions, a prerequisite step is to link those medical mentions to a medical domain knowledge base (KB). This linkage of mention to a well-defined, unambiguous KB is a ne...
Autores principales: | Yan, Cheng, Zhang, Yuanzhe, Liu, Kang, Zhao, Jun, Shi, Yafei, Liu, Shengping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8596894/ https://www.ncbi.nlm.nih.gov/pubmed/34789262 http://dx.doi.org/10.1186/s12911-021-01654-z |
Ejemplares similares
-
Populating a linked data entity name system: a big data solution to unsupervised instance matching
por: Kejriwal, M
Publicado: (2016) -
Unsupervised Medical Entity Recognition and Linking in Chinese Online Medical Text
por: Xu, Jing, et al.
Publicado: (2018) -
Dual attention multiple instance learning with unsupervised complementary loss for COVID-19 screening
por: Chikontwe, Philip, et al.
Publicado: (2021) -
Unsupervised Bootstrapping of Active Learning for Entity Resolution
por: Primpeli, Anna, et al.
Publicado: (2020) -
Chemical named entity recognition in patents by domain knowledge and unsupervised feature learning
por: Zhang, Yaoyun, et al.
Publicado: (2016)