Cargando…
Cell type identification from single-cell transcriptomes in melanoma
BACKGROUND: Single-cell sequencing approaches allow gene expression to be measured at the single-cell level, providing opportunities and challenges to study the aetiology of complex diseases, including cancer. METHODS: Based on single-cell gene and lncRNA expression levels, we proposed a computation...
Autores principales: | Huo, Qiuyan, Yin, Yu, Liu, Fangfang, Ma, Yuying, Wang, Liming, Qin, Guimin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8596920/ https://www.ncbi.nlm.nih.gov/pubmed/34784909 http://dx.doi.org/10.1186/s12920-021-01118-3 |
Ejemplares similares
-
Single-Cell Transcriptome Analysis in Melanoma Using Network Embedding
por: Wang, Liming, et al.
Publicado: (2021) -
The exploration of disease-specific gene regulatory networks in esophageal carcinoma and stomach adenocarcinoma
por: Qin, Guimin, et al.
Publicado: (2019) -
Gene biomarker prediction in glioma by integrating scRNA-seq data and gene regulatory network
por: Qin, Guimin, et al.
Publicado: (2021) -
Identification of Transcriptional Heterogeneity and Construction of a Prognostic Model for Melanoma Based on Single-Cell and Bulk Transcriptome Analysis
por: Kang, Zijian, et al.
Publicado: (2022) -
High-Dimensional Single-Cell Transcriptomics in Melanoma and Cancer Immunotherapy
por: Quek, Camelia, et al.
Publicado: (2021)