Cargando…
A deep learning based approach identifies regions more relevant than resting‐state networks to the prediction of general intelligence from resting‐state fMRI
Prediction of cognitive ability latent factors such as general intelligence from neuroimaging has elucidated questions pertaining to their neural origins. However, predicting general intelligence from functional connectivity limit hypotheses to that specific domain, being agnostic to time‐distribute...
Autores principales: | Hebling Vieira, Bruno, Dubois, Julien, Calhoun, Vince D., Garrido Salmon, Carlos Ernesto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8596958/ https://www.ncbi.nlm.nih.gov/pubmed/34587333 http://dx.doi.org/10.1002/hbm.25656 |
Ejemplares similares
-
Phase fMRI Reveals More Sparseness and Balance of Rest Brain Functional Connectivity Than Magnitude fMRI
por: Chen, Zikuan, et al.
Publicado: (2019) -
Frequency-Aware Summarization of Resting-State fMRI Data
por: Yaesoubi, Maziar, et al.
Publicado: (2020) -
Identification of Homogeneous Subgroups from Resting-State fMRI Data
por: Yang, Hanlu, et al.
Publicado: (2023) -
Brain Networks and Intelligence: A Graph Neural Network Based Approach to Resting State fMRI Data
por: Thapaliya, Bishal, et al.
Publicado: (2023) -
Resting-State fMRI Dynamics and Null Models: Perspectives, Sampling Variability, and Simulations
por: Miller, Robyn L., et al.
Publicado: (2018)