Cargando…

Inside a Shell—Organometallic Catalysis Inside Encapsulin Nanoreactors

Compartmentalization of chemical reactions inside cells are a fundamental requirement for life. Encapsulins are self‐assembling protein‐based nanocompartments from the prokaryotic repertoire that present a highly attractive platform for intracellular compartmentalization of chemical reactions by des...

Descripción completa

Detalles Bibliográficos
Autores principales: Lohner, Philipp, Zmyslia, Mariia, Thurn, Johann, Pape, Jasmin K., Gerasimaitė, Rūta, Keller‐Findeisen, Jan, Groeer, Saskia, Deuringer, Benedikt, Süss, Regine, Walther, Andreas, Hell, Stefan W., Lukinavičius, Gražvydas, Hugel, Thorsten, Jessen‐Trefzer, Claudia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8596989/
https://www.ncbi.nlm.nih.gov/pubmed/34418246
http://dx.doi.org/10.1002/anie.202110327
Descripción
Sumario:Compartmentalization of chemical reactions inside cells are a fundamental requirement for life. Encapsulins are self‐assembling protein‐based nanocompartments from the prokaryotic repertoire that present a highly attractive platform for intracellular compartmentalization of chemical reactions by design. Using single‐molecule Förster resonance energy transfer and 3D‐MINFLUX analysis, we analyze fluorescently labeled encapsulins on a single‐molecule basis. Furthermore, by equipping these capsules with a synthetic ruthenium catalyst via covalent attachment to a non‐native host protein, we are able to perform in vitro catalysis and go on to show that engineered encapsulins can be used as hosts for transition metal catalysis inside living cells in confined space.