Cargando…

A Self‐immolative Molecular Beacon for Amplified Nucleic Acid Detection

Fluorogenic hybridization probes allow the detection of RNA and DNA sequences in homogeneous solution. Typically, one target molecule activates the fluorescence of a single probe molecule. This limits the sensitivity of nucleic acid detection. Herein, we report a self‐immolative molecular beacon (iM...

Descripción completa

Detalles Bibliográficos
Autores principales: Roth, Magdalena, Seitz, Oliver
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8597011/
https://www.ncbi.nlm.nih.gov/pubmed/34516006
http://dx.doi.org/10.1002/chem.202102600
Descripción
Sumario:Fluorogenic hybridization probes allow the detection of RNA and DNA sequences in homogeneous solution. Typically, one target molecule activates the fluorescence of a single probe molecule. This limits the sensitivity of nucleic acid detection. Herein, we report a self‐immolative molecular beacon (iMB) that escapes the one‐target/one‐probe paradigm. The iMB probe includes a photoreductively cleavable N‐alkyl‐picolinium (NAP) linkage within the loop region. A fluorophore at the 5’‐end serves, on the one hand, as a reporter group and, on the other hand, as a photosensitizer of a NAP‐linker cleavage reaction. In the absence of target, the iMB adopts a hairpin shape. Quencher groups prevent photo‐induced cleavage. The iMB opens upon hybridization with a target, and both fluorescent emission as well as photo‐reductive cleavage of the NAP linker can occur. In contrast to previous chemical amplification reactions, iMBs are unimolecular probes that undergo cleavage leading to products that have lower target affinity than the probes before reaction. Aided by catalysis, the method allowed the detection of 5 pm RNA target within 100 min.