Cargando…
EOESGC: predicting miRNA-disease associations based on embedding of embedding and simplified graph convolutional network
BACKGROUND: A large number of biological studies have shown that miRNAs are inextricably linked to many complex diseases. Studying the miRNA-disease associations could provide us a root cause understanding of the underlying pathogenesis in which promotes the progress of drug development. However, tr...
Autores principales: | Pang, Shanchen, Zhuang, Yu, Wang, Xinzeng, Wang, Fuyu, Qiao, Sibo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8597227/ https://www.ncbi.nlm.nih.gov/pubmed/34789236 http://dx.doi.org/10.1186/s12911-021-01671-y |
Ejemplares similares
-
SGAEMDA: Predicting miRNA-Disease Associations Based on Stacked Graph Autoencoder
por: Wang, Shudong, et al.
Publicado: (2022) -
Co-embedding of edges and nodes with deep graph convolutional neural networks
por: Zhou, Yuchen, et al.
Publicado: (2023) -
CGNet: A graph-knowledge embedded convolutional neural network for detection of pneumonia
por: Yu, Xiang, et al.
Publicado: (2021) -
Graph embedding ensemble methods based on the heterogeneous network for lncRNA-miRNA interaction prediction
por: Zhao, Chengshuai, et al.
Publicado: (2020) -
AMCSMMA: Predicting Small Molecule–miRNA Potential Associations Based on Accurate Matrix Completion
por: Wang, Shudong, et al.
Publicado: (2023)