Cargando…
Drug–target interaction prediction using unifying of graph regularized nuclear norm with bilinear factorization
BACKGROUND: Wet-lab experiments for identification of interactions between drugs and target proteins are time-consuming, costly and labor-intensive. The use of computational prediction of drug–target interactions (DTIs), which is one of the significant points in drug discovery, has been considered b...
Autores principales: | Sorkhi, Ali Ghanbari, Abbasi, Zahra, Mobarakeh, Majid Iranpour, Pirgazi, Jamshid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8597250/ https://www.ncbi.nlm.nih.gov/pubmed/34789169 http://dx.doi.org/10.1186/s12859-021-04464-2 |
Ejemplares similares
-
Improving prediction of drug-target interactions based on fusing multiple features with data balancing and feature selection techniques
por: Khojasteh, Hakimeh, et al.
Publicado: (2023) -
A hybrid feature extraction scheme for efficient malonylation site prediction
por: Sorkhi, Ali Ghanbari, et al.
Publicado: (2022) -
Drug-target interaction prediction using Multi Graph Regularized Nuclear Norm Minimization
por: Mongia, Aanchal, et al.
Publicado: (2020) -
Learning temporal attention in dynamic graphs with bilinear interactions
por: Knyazev, Boris, et al.
Publicado: (2021) -
Regular restrictions of the singular bilinear forms
por: Karwowski, W, et al.
Publicado: (1993)