Cargando…
Registration, publication, and outcome reporting among pivotal clinical trials that supported FDA approval of high-risk cardiovascular devices before and after FDAAA
BACKGROUND: Selective registration, publication, and outcome reporting of clinical trials distort the primary clinical evidence that is available to patients and clinicians regarding the safety and efficacy of US Food and Drug Administration (FDA)-approved medical devices. The purpose of this study...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8597303/ https://www.ncbi.nlm.nih.gov/pubmed/34789308 http://dx.doi.org/10.1186/s13063-021-05790-9 |
Sumario: | BACKGROUND: Selective registration, publication, and outcome reporting of clinical trials distort the primary clinical evidence that is available to patients and clinicians regarding the safety and efficacy of US Food and Drug Administration (FDA)-approved medical devices. The purpose of this study is to compare registration, publication, and outcome reporting among pivotal clinical trials that supported FDA approval of high-risk (class III) cardiovascular devices before and after the FDA Amendment Act (FDAAA) was enacted in 2007. METHODS: Using publicly available data from ClinicalTrials.gov, FDA summaries, and PubMed, we determined registration, publication, and reporting of findings for all pivotal clinical studies supporting FDA approval of new high-risk cardiovascular devices between 2005 and 2020, before and after FDAAA. For published studies, we compared both the primary efficacy outcome with the FDA’s Premarket Approval (PMA) primary efficacy outcome and the published interpretation of findings with the FDA reviewer’s interpretation (positive, equivocal, or negative). RESULTS: Between 2005 and 2020, the FDA approved 156 high-risk cardiovascular devices on the basis of 165 pivotal trials, 48 (29%) of which were categorized as pre-FDAAA and 117 (71%) as post-FDAAA. Post-FDAAA, pivotal clinical trials were more likely to be registered (115 of 117 (98%) vs 24 of 48 (50%); p < 0.001), to report results (98 of 117 (87%) vs 7 of 48 (15%); p < 0.001) on ClinicalTrials.gov, and to be published (100 or 117 (85%) vs 28 of 48 (58%); p < 0.001) in peer-reviewed literature when compared to pre-FDAAA. Among published trials, rates of concordant primary efficacy outcome reporting were not significantly different between pre-FDAAA trials and post-FDAAA trials (24 of 28 (86%) vs 96 of 100 (96%); p = 0.07), nor were rates of concordant trial interpretation (27 of 28 (96%) vs 93 of 100 (93%); p = 0.44). CONCLUSIONS: FDAAA was associated with increased registration, result reporting, and publication for trials supporting FDA approval of high-risk medical devices. Among published trials, rates of accurate primary efficacy outcome reporting and trial interpretation were high and no different post-FDAAA. |
---|