Cargando…

Multifarious Biological Applications and Toxic Hg(2+) Sensing Potentiality of Biogenic Silver Nanoparticles Based on Securidaca inappendiculata Hassk Stem Extract

INTRODUCTION: The use of environmentally benign resources for nanoparticles synthesis is consistently pushed to the front burner in a bid to ensure and enhance environmental protection and beneficiation. In this light, application of different plant parts for the reduction and stabilization of nanop...

Descripción completa

Detalles Bibliográficos
Autores principales: Jayeoye, Titilope John, Eze, Fredrick Nwude, Olatunde, Oladipupo Odunayo, Singh, Sudarshan, Zuo, Jian, Olatunji, Opeyemi Joshua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8597655/
https://www.ncbi.nlm.nih.gov/pubmed/34803379
http://dx.doi.org/10.2147/IJN.S325996
Descripción
Sumario:INTRODUCTION: The use of environmentally benign resources for nanoparticles synthesis is consistently pushed to the front burner in a bid to ensure and enhance environmental protection and beneficiation. In this light, application of different plant parts for the reduction and stabilization of nanoparticles is gaining popularity. MATERIALS AND METHODS: In this contribution, we have exploited Securidaca inappendiculata stem extract (SISE), as the reducing and stabilizing agent for room temperature synthesis of highly stable and dispersed AgNPs. The major bioactive compounds in SISE were profiled using an ultra-high-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UHPLC-MS-QTOF-MS). RESULTS AND DISCUSSION: SISE could reduce silver salts to its nanoparticles almost instantaneously with a maximum absorption spectrum at 423 nm, under the optimal conditions. The fabricated SISE AgNPs was extensively characterized using FTIR, TEM, SEM, XRD, EDS, Zeta analysis/DLS and TGA/DTG analysis. SISE AgNPs with average particles size between 10–15 nm and a zeta potential value of −19.5 ± 1.8 mV was obtained. It was investigated for in-vitro biological applications by carrying out, antimicrobial, antioxidant, hemolytic, cytotoxicity and antidiabetic assays. It was found that SISE AgNPs exhibited potent antimicrobial capacity against some food borne microbes, good antioxidant property, while also demonstrating high biocompatibility. Moreover, with a view to extending further the applications SISE AgNPs, it was tested as a colorimetric nanoprobe for Hg(2+) detection in aqueous environment, where good linearity between 0.10 and 10.0 μM, with a detection limit of 26.5 nM, were obtained. The practicality of the probe was investigated by carrying out Hg(2+) detection in water sample, with good accuracy and precision. DISCUSSION: Overall, this work introduced a new stabilizer for biocompatible AgNPs with far-reaching applications.