Cargando…
Golem: an algorithm for robust experiment and process optimization
Numerous challenges in science and engineering can be framed as optimization tasks, including the maximization of reaction yields, the optimization of molecular and materials properties, and the fine-tuning of automated hardware protocols. Design of experiment and optimization algorithms are often a...
Autores principales: | Aldeghi, Matteo, Häse, Florian, Hickman, Riley J., Tamblyn, Isaac, Aspuru-Guzik, Alán |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8597856/ https://www.ncbi.nlm.nih.gov/pubmed/34820095 http://dx.doi.org/10.1039/d1sc01545a |
Ejemplares similares
-
Machine learning models to accelerate the design of polymeric long-acting injectables
por: Bannigan, Pauric, et al.
Publicado: (2023) -
Chimera: enabling hierarchy based multi-objective optimization for self-driving laboratories
por: Häse, Florian, et al.
Publicado: (2018) -
Machine learning for quantum dynamics: deep learning of excitation energy transfer properties
por: Häse, Florian, et al.
Publicado: (2017) -
The Golem
por: Petiska, Eduard
Publicado: (1991) -
Machine learning exciton dynamics
por: Häse, Florian, et al.
Publicado: (2016)