Cargando…
Re-identification of individuals in genomic datasets using public face images
Recent studies suggest that genomic data can be matched to images of human faces, raising the concern that genomic data can be re-identified with relative ease. However, such investigations assume access to well-curated images, which are rarely available in practice and challenging to derive from ph...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8597988/ https://www.ncbi.nlm.nih.gov/pubmed/34788101 http://dx.doi.org/10.1126/sciadv.abg3296 |
_version_ | 1784600712035958784 |
---|---|
author | Venkatesaramani, Rajagopal Malin, Bradley A. Vorobeychik, Yevgeniy |
author_facet | Venkatesaramani, Rajagopal Malin, Bradley A. Vorobeychik, Yevgeniy |
author_sort | Venkatesaramani, Rajagopal |
collection | PubMed |
description | Recent studies suggest that genomic data can be matched to images of human faces, raising the concern that genomic data can be re-identified with relative ease. However, such investigations assume access to well-curated images, which are rarely available in practice and challenging to derive from photos not generated in a controlled laboratory setting. In this study, we reconsider re-identification risk and find that, for most individuals, the actual risk posed by linkage attacks to typical face images is substantially smaller than claimed in prior investigations. Moreover, we show that only a small amount of well-calibrated noise, imperceptible to humans, can be added to images to markedly reduce such risk. The results of this investigation create an opportunity to create image filters that enable individuals to have better control over re-identification risk based on linkage. |
format | Online Article Text |
id | pubmed-8597988 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-85979882021-11-29 Re-identification of individuals in genomic datasets using public face images Venkatesaramani, Rajagopal Malin, Bradley A. Vorobeychik, Yevgeniy Sci Adv Social and Interdisciplinary Sciences Recent studies suggest that genomic data can be matched to images of human faces, raising the concern that genomic data can be re-identified with relative ease. However, such investigations assume access to well-curated images, which are rarely available in practice and challenging to derive from photos not generated in a controlled laboratory setting. In this study, we reconsider re-identification risk and find that, for most individuals, the actual risk posed by linkage attacks to typical face images is substantially smaller than claimed in prior investigations. Moreover, we show that only a small amount of well-calibrated noise, imperceptible to humans, can be added to images to markedly reduce such risk. The results of this investigation create an opportunity to create image filters that enable individuals to have better control over re-identification risk based on linkage. American Association for the Advancement of Science 2021-11-17 /pmc/articles/PMC8597988/ /pubmed/34788101 http://dx.doi.org/10.1126/sciadv.abg3296 Text en Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution license (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Social and Interdisciplinary Sciences Venkatesaramani, Rajagopal Malin, Bradley A. Vorobeychik, Yevgeniy Re-identification of individuals in genomic datasets using public face images |
title | Re-identification of individuals in genomic datasets using public face images |
title_full | Re-identification of individuals in genomic datasets using public face images |
title_fullStr | Re-identification of individuals in genomic datasets using public face images |
title_full_unstemmed | Re-identification of individuals in genomic datasets using public face images |
title_short | Re-identification of individuals in genomic datasets using public face images |
title_sort | re-identification of individuals in genomic datasets using public face images |
topic | Social and Interdisciplinary Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8597988/ https://www.ncbi.nlm.nih.gov/pubmed/34788101 http://dx.doi.org/10.1126/sciadv.abg3296 |
work_keys_str_mv | AT venkatesaramanirajagopal reidentificationofindividualsingenomicdatasetsusingpublicfaceimages AT malinbradleya reidentificationofindividualsingenomicdatasetsusingpublicfaceimages AT vorobeychikyevgeniy reidentificationofindividualsingenomicdatasetsusingpublicfaceimages |