Cargando…

The IAEA remote and automated quality control methodology for radiography and mammography

Radiography remains the most widely used imaging modality throughout the world. Additionally, while it has been demonstrated that a quality control (QC) program, especially in mammography, improves image quality, weekly technologist QC testing might be lacking even where there is clinical qualified...

Descripción completa

Detalles Bibliográficos
Autores principales: Mora, Patricia, Pfeiffer, Douglas, Zhang, Gouzhi, Bosmans, Hilde, Delis, Harry, Razi, Zahra, Arreola, Manuel, Tsapaki, Virginia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8598138/
https://www.ncbi.nlm.nih.gov/pubmed/34623023
http://dx.doi.org/10.1002/acm2.13431
Descripción
Sumario:Radiography remains the most widely used imaging modality throughout the world. Additionally, while it has been demonstrated that a quality control (QC) program, especially in mammography, improves image quality, weekly technologist QC testing might be lacking even where there is clinical qualified medical physicist (CQMP) support. Therefore, the International Atomic Energy Agency (IAEA) developed simple QC phantoms that can easily be used on a regular basis (daily/weekly) for radiography and mammography. These are simple in design and use materials that are easily accessible in most parts of the world. A software application is also developed that automatically analyzes images and Digital Imaging and Communications in Medicine (DICOM) header information. It exports data to a comma‐separated values (CSV) file that is read by a Microsoft Excel® spreadsheet for documentation and graphical analysis. The phantom and the software were tested in four institutions (in Costa Rica and the United States of America) both on computed radiography and direct digital mammography and radiography systems. Data were collected over a 3‐year period. No corrective actions were taken on the data, but service was performed on two of the units. Results demonstrated noise that could be attributed to suboptimal placement of the phantom and incorrect data being put into the DICOM header. Preliminary evaluation of the IAEA methodology has demonstrated that it can provide meaningful QC data that are sensitive to changes in the imaging systems. Care must be taken at implementation to properly train personnel and ensure that the image data, including the DICOM header, are being correctly transmitted. The methodology gives the opportunity for a single CQMP to provide QC services even to remote sites where travel is prohibitive, and it is feasible and easy to implement.