Cargando…
Clinical application and improvement of a CNN‐based autosegmentation model for clinical target volumes in cervical cancer radiotherapy
OBJECTIVE: Clinical target volume (CTV) autosegmentation for cervical cancer is desirable for radiation therapy. Data heterogeneity and interobserver variability (IOV) limit the clinical adaptability of such methods. The adaptive method is proposed to improve the adaptability of CNN‐based autosegmen...
Autores principales: | Chang, Yankui, Wang, Zhi, Peng, Zhao, Zhou, Jieping, Pi, Yifei, Xu, X. George, Pei, Xi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8598149/ https://www.ncbi.nlm.nih.gov/pubmed/34643320 http://dx.doi.org/10.1002/acm2.13440 |
Ejemplares similares
-
Evaluation of deep learning‐based auto‐segmentation algorithms for delineating clinical target volume and organs at risk involving data for 125 cervical cancer patients
por: Wang, Zhi, et al.
Publicado: (2020) -
A method of using deep learning to predict three‐dimensional dose distributions for intensity‐modulated radiotherapy of rectal cancer
por: Zhou, Jieping, et al.
Publicado: (2020) -
The suitability of common metrics for assessing parotid and larynx autosegmentation accuracy
por: Beasley, William J., et al.
Publicado: (2016) -
Transfer Learning-Based Autosegmentation of Primary Tumor Volumes of Glioblastomas Using Preoperative MRI for Radiotherapy Treatment
por: Tian, Suqing, et al.
Publicado: (2022) -
An attention base U-net for parotid tumor autosegmentation
por: Xia, Xianwu, et al.
Publicado: (2022)