Cargando…
Transfer learning compensates limited data, batch effects and technological heterogeneity in single-cell sequencing
Tremendous advances in next-generation sequencing technology have enabled the accumulation of large amounts of omics data in various research areas over the past decade. However, study limitations due to small sample sizes, especially in rare disease clinical research, technological heterogeneity an...
Autores principales: | Park, Youngjun, Hauschild, Anne-Christin, Heider, Dominik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8598306/ https://www.ncbi.nlm.nih.gov/pubmed/34805988 http://dx.doi.org/10.1093/nargab/lqab104 |
Ejemplares similares
-
A large-scale comparative study on peptide encodings for biomedical classification
por: Spänig, Sebastian, et al.
Publicado: (2021) -
Integrative Analysis of Next-Generation Sequencing for Next-Generation Cancer Research toward Artificial Intelligence
por: Park, Youngjun, et al.
Publicado: (2021) -
Fostering reproducibility, reusability, and technology transfer in health informatics
por: Hauschild, Anne-Christin, et al.
Publicado: (2021) -
SelectBCM tool: a batch evaluation framework to select the most appropriate batch-correction methods for bulk transcriptome analysis
por: Mishra, Madhulika, et al.
Publicado: (2023) -
Transfer learning identifies sequence determinants of cell-type specific regulatory element accessibility
por: Salvatore, Marco, et al.
Publicado: (2023)