Cargando…
Comparison of mice’ sperm parameters exposed to some hazardous physical agents
The present study was aimed to compare the effects of exposure to noise, vibration, lighting, and microwave on male mice’ sperm parameters. The mice were randomly assigned to five groups of eight, which comprised of the unexposed group and exposure groups including the lighting (1000 lux), noise (10...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society of Environmental Health and Toxicology/Korea Society for Environmental Analysis
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8598403/ https://www.ncbi.nlm.nih.gov/pubmed/34353003 http://dx.doi.org/10.5620/eaht.2021013 |
Sumario: | The present study was aimed to compare the effects of exposure to noise, vibration, lighting, and microwave on male mice’ sperm parameters. The mice were randomly assigned to five groups of eight, which comprised of the unexposed group and exposure groups including the lighting (1000 lux), noise (100 dB(A)), vibration (acceleration of 1.2 m/s(2)) and microwave (power density of 5 watts). The exposure groups were subjected to the four agents for 8 hours a day, 5 days a week during a 2-week period. Semen analysis were done according to World Health Organization guidelines. The highest significant mean difference in sperm count (−1.35×10(6)/mL) had being observed between the microwave group and the control one (P=0.001). The highest difference in immotile percent (25.88 %) had being observed between the noise group and the control one (P=0.001). The highest difference in normal morphology (−27.06 %) observed between the lighting exposure group and the control group (P=0.001). The four agents can cause changes in different sperm parameters, however for definite conclusion; more laboratory and field studies are required. In total, exposure to microwave has had the greatest effect on sperm count and exposure to light has had the greatest effect on normal morphology and non-progressive motility. Moreover, exposure to noise has had the greatest effect on progressive motility and immotile percent, respectively. |
---|