Cargando…
Metaviromic identification of discriminative genomic features in SARS-CoV-2 using machine learning
The COVID-19 pandemic caused by SARS-CoV-2 has become a major threat across the globe. Here, we developed machine learning approaches to identify key pathogenic regions in coronavirus genomes. We trained and evaluated 7,562,625 models on 3,665 genomes including SARS-CoV-2, MERS-CoV, SARS-CoV, and ot...
Autores principales: | Park, Jonathan J., Chen, Sidi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8598947/ https://www.ncbi.nlm.nih.gov/pubmed/34812427 http://dx.doi.org/10.1016/j.patter.2021.100407 |
Ejemplares similares
-
Evidence for metaviromic islands in marine phages
por: Mizuno, Carolina Megumi, et al.
Publicado: (2014) -
Comparative metavirome analysis in polytransfused patients
por: Valença, I.N., et al.
Publicado: (2021) -
Metavirome Analysis and Identification of Midge-Borne Viruses from Yunnan Province, China, in 2021
por: Li, Chenghui, et al.
Publicado: (2023) -
Novel phages of healthy skin metaviromes from South Africa
por: van Zyl, Leonardo Joaquim, et al.
Publicado: (2018) -
Assessing Species Diversity Using Metavirome Data: Methods and Challenges
por: Herath, Damayanthi, et al.
Publicado: (2017)