Cargando…
Early Cost Effectiveness of Whole-Genome Sequencing as a Clinical Diagnostic Test for Patients with Inoperable Stage IIIB,C/IV Non-squamous Non-small-Cell Lung Cancer
BACKGROUND: Advanced non-small-cell lung cancer (NSCLC) harbours many genetic aberrations that can be targeted with systemic treatments. Whole-genome sequencing (WGS) can simultaneously detect these (and possibly new) molecular targets. However, the exact added clinical value of WGS is unknown. OBJE...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8599348/ https://www.ncbi.nlm.nih.gov/pubmed/34405371 http://dx.doi.org/10.1007/s40273-021-01073-y |
Sumario: | BACKGROUND: Advanced non-small-cell lung cancer (NSCLC) harbours many genetic aberrations that can be targeted with systemic treatments. Whole-genome sequencing (WGS) can simultaneously detect these (and possibly new) molecular targets. However, the exact added clinical value of WGS is unknown. OBJECTIVE: The objective of this study was to determine the early cost effectiveness of using WGS in diagnostic strategies compared with currently used molecular diagnostics for patients with inoperable stage IIIB,C/IV non-squamous NSCLC from a Dutch healthcare perspective. METHODS: A decision tree represented the diagnostic pathway, and a cohort state transition model represented disease progression. Three diagnostic strategies were modelled: standard of care (SoC) alone, WGS as a diagnostic test, and SoC followed by WGS. Treatment effectiveness was based on a systematic review. Probabilistic cost-effectiveness analyses were performed, and threshold analyses (using €80,000 per quality-adjusted life-year [QALY]) was used to explore the early cost effectiveness of WGS. RESULTS: WGS as a diagnostic test resulted in more QALYs (0.002) and costs (€1534 [incremental net monetary benefit –€1349]), and SoC followed by WGS resulted in fewer QALYs (–0.002) and more costs (€1059 [–€1194]) compared with SoC alone. WGS as a diagnostic test was only cost effective if it was priced at €2000 per patient and identified 2.7% more actionable patients than SoC alone. Treating these additional identified patients with new treatments costing >€4069 per month decreased the probability of cost effectiveness. CONCLUSIONS: Our analysis suggests that providing WGS as a diagnostic test is cost effective compared with SoC followed by WGS and SoC alone if costs for WGS decrease and additional patients with actionable targets are identified. This cost-effectiveness model can be used to incorporate new findings iteratively and to support ongoing decision making regarding the use of WGS in this rapidly evolving field. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40273-021-01073-y. |
---|