Cargando…

Sex and region-specific effects of variable stress on microglia morphology

Major Depressive Disorder (MDD) is a common and debilitating mood disorder that is more prevalent in women than men. In humans, PET imaging of microglia activation is currently being explored as a potential biomarker of MDD and suicidal ideation. Stress is a trigger for many mood disorders, includin...

Descripción completa

Detalles Bibliográficos
Autores principales: Tsyglakova, Mariya, Huskey, Alisa M., Hurst, Emily H., Telep, Natalie M., Wilding, Mary C., Babington, Meghan E., Rainville, Jennifer R., Hodes, Georgia E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8600001/
https://www.ncbi.nlm.nih.gov/pubmed/34820640
http://dx.doi.org/10.1016/j.bbih.2021.100378
Descripción
Sumario:Major Depressive Disorder (MDD) is a common and debilitating mood disorder that is more prevalent in women than men. In humans, PET imaging of microglia activation is currently being explored as a potential biomarker of MDD and suicidal ideation. Stress is a trigger for many mood disorders, including MDD. Microglial changes in morphology and activation state in response to stress has been reported in various brain regions, but most studies only examined male subjects. Here we report changes in microglia morphology in the nucleus accumbens (NAc) and subregions of the hippocampus (HPC) in both male and female mice following variable stress of 6 or 28 days in duration. Our data demonstrate that after 6 days of stress, microglia in the female NAc and dentate gyrus have a reduction in homeostatic associated morphology and an increase in primed microglia. After 28 days some of these sex specific stress effects were still present in microglia within the NAc but not the dentate gyrus. There were no effects of stress in either sex at either timepoint in CA1. In female mice, anti-inflammatory activation of microglia using rosiglitazone promoted sociability behavior after 6 days of stress. Furthermore, both drug and stress have impact on microglia morphology and activation state in the NAc. These data suggest that microglia morphology and activation state are altered by 6 days of variable stress in a region-specific manner and may contribute to, or potentially compensate for, the onset of stress susceptibility rather than impacting long term exposure to stress.