Cargando…

Modeling and experimental analysis of battery charge controllers for comparing three off-grid photovoltaic power plants

The study of battery charge algorithm as a sole power storage agent in off-grid systems is essential. The battery charge algorithm has various methods, and the battery in these methods relies on the quantity of charges. Hence, a charge controller is used to safeguard and regulate battery charge and...

Descripción completa

Detalles Bibliográficos
Autores principales: Apeh, Oliver O., Meyer, Edson L., Overen, Ochuko K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8600090/
https://www.ncbi.nlm.nih.gov/pubmed/34820540
http://dx.doi.org/10.1016/j.heliyon.2021.e08331
_version_ 1784601074832769024
author Apeh, Oliver O.
Meyer, Edson L.
Overen, Ochuko K.
author_facet Apeh, Oliver O.
Meyer, Edson L.
Overen, Ochuko K.
author_sort Apeh, Oliver O.
collection PubMed
description The study of battery charge algorithm as a sole power storage agent in off-grid systems is essential. The battery charge algorithm has various methods, and the battery in these methods relies on the quantity of charges. Hence, a charge controller is used to safeguard and regulate battery charge and discharge for off-grid photovoltaic (PV) systems. This study presents the 11.4 kWp power plant analysis comprising three 3.8 kWp each of off-grid, hybrid and grid-assisted systems with battery capacities of 900 Ah, 1235 Ah and 910 Ah, respectively, where all the systems were reconfigured to function as off-grids. The battery charge controller charges the lead-acid battery using a three-stage charging strategy, including constant current, constant voltage and float charge stage. A DT80 data logger was installed to simultaneously record the electrical parameters of the systems, while Kipp & Zonen CMP 11 pyranometer was selected to measure solar radiation data. Experimentation with three electric bar heaters, each with fan and humidifier, were used as loads to draw constant power of 1.2 kW from batteries of each system on charging and discharging on an overcast and clear sky days for a week. The useful study is performed in the following ways, MPPT tracking performance, battery charging and discharging performance and charge controller efficiency. The performance results reveal that the MPPT can track the PV module maximum point at solar irradiance from 07h15 to around 12h00 maximum power tracking efficiency. An irradiance of illumination fluctuates from 5 W/m(2) to 850 W/m(2) while the electrical energy consumed by the loads in off-grid, hybrid and grid-assisted systems are 456.12, 568.87 and 80.00 Wh, respectively. It is estimated that individual owners could charge electric appliances from residential and commercial buildings of solar arrays of clean, renewable solar energy.
format Online
Article
Text
id pubmed-8600090
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-86000902021-11-23 Modeling and experimental analysis of battery charge controllers for comparing three off-grid photovoltaic power plants Apeh, Oliver O. Meyer, Edson L. Overen, Ochuko K. Heliyon Research Article The study of battery charge algorithm as a sole power storage agent in off-grid systems is essential. The battery charge algorithm has various methods, and the battery in these methods relies on the quantity of charges. Hence, a charge controller is used to safeguard and regulate battery charge and discharge for off-grid photovoltaic (PV) systems. This study presents the 11.4 kWp power plant analysis comprising three 3.8 kWp each of off-grid, hybrid and grid-assisted systems with battery capacities of 900 Ah, 1235 Ah and 910 Ah, respectively, where all the systems were reconfigured to function as off-grids. The battery charge controller charges the lead-acid battery using a three-stage charging strategy, including constant current, constant voltage and float charge stage. A DT80 data logger was installed to simultaneously record the electrical parameters of the systems, while Kipp & Zonen CMP 11 pyranometer was selected to measure solar radiation data. Experimentation with three electric bar heaters, each with fan and humidifier, were used as loads to draw constant power of 1.2 kW from batteries of each system on charging and discharging on an overcast and clear sky days for a week. The useful study is performed in the following ways, MPPT tracking performance, battery charging and discharging performance and charge controller efficiency. The performance results reveal that the MPPT can track the PV module maximum point at solar irradiance from 07h15 to around 12h00 maximum power tracking efficiency. An irradiance of illumination fluctuates from 5 W/m(2) to 850 W/m(2) while the electrical energy consumed by the loads in off-grid, hybrid and grid-assisted systems are 456.12, 568.87 and 80.00 Wh, respectively. It is estimated that individual owners could charge electric appliances from residential and commercial buildings of solar arrays of clean, renewable solar energy. Elsevier 2021-11-08 /pmc/articles/PMC8600090/ /pubmed/34820540 http://dx.doi.org/10.1016/j.heliyon.2021.e08331 Text en © 2021 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Article
Apeh, Oliver O.
Meyer, Edson L.
Overen, Ochuko K.
Modeling and experimental analysis of battery charge controllers for comparing three off-grid photovoltaic power plants
title Modeling and experimental analysis of battery charge controllers for comparing three off-grid photovoltaic power plants
title_full Modeling and experimental analysis of battery charge controllers for comparing three off-grid photovoltaic power plants
title_fullStr Modeling and experimental analysis of battery charge controllers for comparing three off-grid photovoltaic power plants
title_full_unstemmed Modeling and experimental analysis of battery charge controllers for comparing three off-grid photovoltaic power plants
title_short Modeling and experimental analysis of battery charge controllers for comparing three off-grid photovoltaic power plants
title_sort modeling and experimental analysis of battery charge controllers for comparing three off-grid photovoltaic power plants
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8600090/
https://www.ncbi.nlm.nih.gov/pubmed/34820540
http://dx.doi.org/10.1016/j.heliyon.2021.e08331
work_keys_str_mv AT apeholivero modelingandexperimentalanalysisofbatterychargecontrollersforcomparingthreeoffgridphotovoltaicpowerplants
AT meyeredsonl modelingandexperimentalanalysisofbatterychargecontrollersforcomparingthreeoffgridphotovoltaicpowerplants
AT overenochukok modelingandexperimentalanalysisofbatterychargecontrollersforcomparingthreeoffgridphotovoltaicpowerplants