Cargando…
Data-centric approach to improve machine learning models for inorganic materials
Pandey et al. (2021) demonstrate the importance of diversifying training data to make balanced predictions of thermodynamic properties for inorganic crystals.
Autor principal: | Bartel, Christopher J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8600243/ https://www.ncbi.nlm.nih.gov/pubmed/34820652 http://dx.doi.org/10.1016/j.patter.2021.100382 |
Ejemplares similares
-
Predicting material microstructure evolution via data-driven machine learning
por: Kautz, Elizabeth J.
Publicado: (2021) -
Preview of machine learning the quantum-chemical properties of metal–organic frameworks for accelerated materials discovery
por: Callaghan, Sarah
Publicado: (2021) -
Practical machine learning for disease diagnosis
por: Summers, Huw D.
Publicado: (2021) -
Preview of “Data and its (dis)contents: A survey of dataset development and use in machine learning research”
por: Vincent, Nicholas, et al.
Publicado: (2021) -
Shattering cancer with quantum machine learning: A preview
por: Geraci, Joseph
Publicado: (2021)