Cargando…
Meta-learning for fake news detection surrounding the Syrian war
In this article, we pursue the automatic detection of fake news reporting on the Syrian war using machine learning and meta-learning. The proposed approach is based on a suite of features that include a given article's linguistic style; its level of subjectivity, sensationalism, and sectarianis...
Autores principales: | Abu Salem, Fatima K., Al Feel, Roaa, Elbassuoni, Shady, Ghannam, Hiyam, Jaber, Mohamad, Farah, May |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8600244/ https://www.ncbi.nlm.nih.gov/pubmed/34820650 http://dx.doi.org/10.1016/j.patter.2021.100369 |
Ejemplares similares
-
Meta-learning for fake news detection surrounding the Syrian war: An interview with co-author Roaa Al Feel
por: Al Feel, Roaa
Publicado: (2021) -
“Fake Tan” or “Fake News”?
por: Meyer, Georg, et al.
Publicado: (2020) -
Using Facebook advertising data to describe the socio-economic situation of Syrian refugees in Lebanon
por: Fatehkia, Masoomali, et al.
Publicado: (2022) -
Fake news during the war in Ukraine: coping strategies and fear of war in the general population of Romania and in aid workers
por: Vintilă, Mona, et al.
Publicado: (2023) -
Deep Ensemble Fake News Detection Model Using Sequential Deep Learning Technique
por: Ali, Abdullah Marish, et al.
Publicado: (2022)