Cargando…
Targeted Next-Generation Sequencing Indicates a Frequent Oligogenic Involvement in Primary Ovarian Insufficiency Onset
Primary ovarian insufficiency (POI) is one of the major causes of female infertility associated with the premature loss of ovarian function in about 3.7% of women before the age of 40. This disorder is highly heterogeneous and can manifest with a wide range of clinical phenotypes, ranging from ovari...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8600266/ https://www.ncbi.nlm.nih.gov/pubmed/34803902 http://dx.doi.org/10.3389/fendo.2021.664645 |
_version_ | 1784601116063825920 |
---|---|
author | Rossetti, Raffaella Moleri, Silvia Guizzardi, Fabiana Gentilini, Davide Libera, Laura Marozzi, Anna Moretti, Costanzo Brancati, Francesco Bonomi, Marco Persani, Luca |
author_facet | Rossetti, Raffaella Moleri, Silvia Guizzardi, Fabiana Gentilini, Davide Libera, Laura Marozzi, Anna Moretti, Costanzo Brancati, Francesco Bonomi, Marco Persani, Luca |
author_sort | Rossetti, Raffaella |
collection | PubMed |
description | Primary ovarian insufficiency (POI) is one of the major causes of female infertility associated with the premature loss of ovarian function in about 3.7% of women before the age of 40. This disorder is highly heterogeneous and can manifest with a wide range of clinical phenotypes, ranging from ovarian dysgenesis and primary amenorrhea to post-pubertal secondary amenorrhea, with elevated serum gonadotropins and hypoestrogenism. The ovarian defect still remains idiopathic in some cases; however, a strong genetic component has been demonstrated by the next-generation sequencing (NGS) approach of familiar and sporadic POI cases. As recent evidence suggested an oligogenic architecture for POI, we developed a target NGS panel with 295 genes including known candidates and novel genetic determinants potentially involved in POI pathogenesis. Sixty-four patients with early onset POI (range: 10–25 years) of our cohort have been screened with 90% of target coverage at 50×. Here, we report 48 analyzed patients with at least one genetic variant (75%) in the selected candidate genes. In particular, we found the following: 11/64 patients (17%) with two variants, 9/64 (14%) with three variants, 9/64 (14%) with four variants, 3/64 (5%) with five variants, and 2/64 (3%) with six variants. The most severe phenotypes were associated with either the major number of variations or a worse prediction in pathogenicity of variants. Bioinformatic gene ontology analysis identified the following major pathways likely affected by gene variants: 1) cell cycle, meiosis, and DNA repair; 2) extracellular matrix remodeling; 3) reproduction; 4) cell metabolism; 5) cell proliferation; 6) calcium homeostasis; 7) NOTCH signaling; 8) signal transduction; 9) WNT signaling; 10) cell death; and 11) ubiquitin modifications. Consistently, the identified pathways have been described in other studies dissecting the mechanisms of folliculogenesis in animal models of altered fertility. In conclusion, our results contribute to define POI as an oligogenic disease and suggest novel candidates to be investigated in patients with POI. |
format | Online Article Text |
id | pubmed-8600266 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-86002662021-11-19 Targeted Next-Generation Sequencing Indicates a Frequent Oligogenic Involvement in Primary Ovarian Insufficiency Onset Rossetti, Raffaella Moleri, Silvia Guizzardi, Fabiana Gentilini, Davide Libera, Laura Marozzi, Anna Moretti, Costanzo Brancati, Francesco Bonomi, Marco Persani, Luca Front Endocrinol (Lausanne) Endocrinology Primary ovarian insufficiency (POI) is one of the major causes of female infertility associated with the premature loss of ovarian function in about 3.7% of women before the age of 40. This disorder is highly heterogeneous and can manifest with a wide range of clinical phenotypes, ranging from ovarian dysgenesis and primary amenorrhea to post-pubertal secondary amenorrhea, with elevated serum gonadotropins and hypoestrogenism. The ovarian defect still remains idiopathic in some cases; however, a strong genetic component has been demonstrated by the next-generation sequencing (NGS) approach of familiar and sporadic POI cases. As recent evidence suggested an oligogenic architecture for POI, we developed a target NGS panel with 295 genes including known candidates and novel genetic determinants potentially involved in POI pathogenesis. Sixty-four patients with early onset POI (range: 10–25 years) of our cohort have been screened with 90% of target coverage at 50×. Here, we report 48 analyzed patients with at least one genetic variant (75%) in the selected candidate genes. In particular, we found the following: 11/64 patients (17%) with two variants, 9/64 (14%) with three variants, 9/64 (14%) with four variants, 3/64 (5%) with five variants, and 2/64 (3%) with six variants. The most severe phenotypes were associated with either the major number of variations or a worse prediction in pathogenicity of variants. Bioinformatic gene ontology analysis identified the following major pathways likely affected by gene variants: 1) cell cycle, meiosis, and DNA repair; 2) extracellular matrix remodeling; 3) reproduction; 4) cell metabolism; 5) cell proliferation; 6) calcium homeostasis; 7) NOTCH signaling; 8) signal transduction; 9) WNT signaling; 10) cell death; and 11) ubiquitin modifications. Consistently, the identified pathways have been described in other studies dissecting the mechanisms of folliculogenesis in animal models of altered fertility. In conclusion, our results contribute to define POI as an oligogenic disease and suggest novel candidates to be investigated in patients with POI. Frontiers Media S.A. 2021-11-04 /pmc/articles/PMC8600266/ /pubmed/34803902 http://dx.doi.org/10.3389/fendo.2021.664645 Text en Copyright © 2021 Rossetti, Moleri, Guizzardi, Gentilini, Libera, Marozzi, Moretti, Brancati, Bonomi and Persani https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Endocrinology Rossetti, Raffaella Moleri, Silvia Guizzardi, Fabiana Gentilini, Davide Libera, Laura Marozzi, Anna Moretti, Costanzo Brancati, Francesco Bonomi, Marco Persani, Luca Targeted Next-Generation Sequencing Indicates a Frequent Oligogenic Involvement in Primary Ovarian Insufficiency Onset |
title | Targeted Next-Generation Sequencing Indicates a Frequent Oligogenic Involvement in Primary Ovarian Insufficiency Onset |
title_full | Targeted Next-Generation Sequencing Indicates a Frequent Oligogenic Involvement in Primary Ovarian Insufficiency Onset |
title_fullStr | Targeted Next-Generation Sequencing Indicates a Frequent Oligogenic Involvement in Primary Ovarian Insufficiency Onset |
title_full_unstemmed | Targeted Next-Generation Sequencing Indicates a Frequent Oligogenic Involvement in Primary Ovarian Insufficiency Onset |
title_short | Targeted Next-Generation Sequencing Indicates a Frequent Oligogenic Involvement in Primary Ovarian Insufficiency Onset |
title_sort | targeted next-generation sequencing indicates a frequent oligogenic involvement in primary ovarian insufficiency onset |
topic | Endocrinology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8600266/ https://www.ncbi.nlm.nih.gov/pubmed/34803902 http://dx.doi.org/10.3389/fendo.2021.664645 |
work_keys_str_mv | AT rossettiraffaella targetednextgenerationsequencingindicatesafrequentoligogenicinvolvementinprimaryovarianinsufficiencyonset AT molerisilvia targetednextgenerationsequencingindicatesafrequentoligogenicinvolvementinprimaryovarianinsufficiencyonset AT guizzardifabiana targetednextgenerationsequencingindicatesafrequentoligogenicinvolvementinprimaryovarianinsufficiencyonset AT gentilinidavide targetednextgenerationsequencingindicatesafrequentoligogenicinvolvementinprimaryovarianinsufficiencyonset AT liberalaura targetednextgenerationsequencingindicatesafrequentoligogenicinvolvementinprimaryovarianinsufficiencyonset AT marozzianna targetednextgenerationsequencingindicatesafrequentoligogenicinvolvementinprimaryovarianinsufficiencyonset AT moretticostanzo targetednextgenerationsequencingindicatesafrequentoligogenicinvolvementinprimaryovarianinsufficiencyonset AT brancatifrancesco targetednextgenerationsequencingindicatesafrequentoligogenicinvolvementinprimaryovarianinsufficiencyonset AT bonomimarco targetednextgenerationsequencingindicatesafrequentoligogenicinvolvementinprimaryovarianinsufficiencyonset AT persaniluca targetednextgenerationsequencingindicatesafrequentoligogenicinvolvementinprimaryovarianinsufficiencyonset |